251 research outputs found

    Formal and quantitative approach to non-functional requirements modeling and assessment in software engineering

    Get PDF
    In the software market place, in which functionally equivalent products compete for the same customer, Non Functional Requirements (NFRs) become more important in distinguishing between the competing products. However, in practice, NFRs receive little attention relative to Functional Requirements (FRs). This is mainly because of the nature of these requirements which poses a challenge when taking the choice of treating them earlier in the software development. NFRs are subjective, relative and they become scattered among multiple modules when they are mapped from the requirements domain to the solution space. Furthermore, NFRs can often interact, in the sense that attempts to achieve one NFR can help or hinder the achievement of other NFRs at particular software functionality. Such an interaction creates an extensive network of interdependencies and tradeoffs among NFRs which is not easy to trace or estimate. This thesis contributes towards achieving the goal of managing the attainable scope and the changes of NFRs. The thesis proposes and empirically evaluates a formal and quantitative approach to modeling and assessing NFRs. Central to such an approach is the implementation of the proposed NFRs Ontology for capturing and structuring the knowledge on the software requirements (FRs and NFRs), their refinements, and their interdependencies. In this thesis, we also propose a change management mechanism for tracing the impact of NFRs on the other constructs in the ontology and vice-versa. We provide a traceability mechanism using Datalog expressions to implement queries on the relational model-based representation for the ontology. An alternative implementation view using XML and XQuery is provided as well. In addition, we propose a novel approach for the early requirements-based effort estimation, based on NFRs Ontology. The effort estimation approach complementarily uses one standard functional size measurement model, namely COSMIC, and a linear regression techniqu

    An Update on Effort Estimation in Agile Software Development: A Systematic Literature Review

    Full text link
    [EN] Software developers require effective effort estimation models to facilitate project planning. Although Usman et al. systematically reviewed and synthesized the effort estimation models and practices for Agile Software Development (ASD) in 2014, new evidence may provide new perspectives for researchers and practitioners. This article presents a systematic literature review that updates the Usman et al. study from 2014 to 2020 by analyzing the data extracted from 73 new papers. This analysis allowed us to identify six agile methods: Scrum, Xtreme Programming and four others, in all of which expert-based estimation methods continue to play an important role. This is particularly the case of Planning Poker, which is very closely related to the most frequently used size metric (story points) and the way in which software requirements are specified in ASD. There is also a remarkable trend toward studying techniques based on the intensive use of data. In this respect, although most of the data originate from single-company datasets, there is a significant increase in the use of cross-company data. With regard to cost factors, we applied the thematic analysis method. The use of team and project factors appears to be more frequent than the consideration of more technical factors, in accordance with agile principles. Finally, although accuracy is still a challenge, we identified that improvements have been made. On the one hand, an increasing number of papers showed acceptable accuracy values, although many continued to report inadequate results. On the other, almost 29% of the papers that reported the accuracy metric used reflected aspects concerning the validation of the models and 18% reported the effect size when comparing models.This work was supported by the Spanish Ministry of Science, Innovation and Universities through the Adapt@Cloud Project under Grant TIN2017-84550-R.Fernández-Diego, M.; Méndez, ER.; González-Ladrón-De-Guevara, F.; Abrahao Gonzales, SM.; Insfran, E. (2020). An Update on Effort Estimation in Agile Software Development: A Systematic Literature Review. IEEE Access. 8:166768-166800. https://doi.org/10.1109/ACCESS.2020.3021664S166768166800

    HARDWARE ATTACK DETECTION AND PREVENTION FOR CHIP SECURITY

    Get PDF
    Hardware security is a serious emerging concern in chip designs and applications. Due to the globalization of the semiconductor design and fabrication process, integrated circuits (ICs, a.k.a. chips) are becoming increasingly vulnerable to passive and active hardware attacks. Passive attacks on chips result in secret information leaking while active attacks cause IC malfunction and catastrophic system failures. This thesis focuses on detection and prevention methods against active attacks, in particular, hardware Trojan (HT). Existing HT detection methods have limited capability to detect small-scale HTs and are further challenged by the increased process variation. We propose to use differential Cascade Voltage Switch Logic (DCVSL) method to detect small HTs and achieve a success rate of 66% to 98%. This work also presents different fault tolerant methods to handle the active attacks on symmetric-key cipher SIMON, which is a recent lightweight cipher. Simulation results show that our Even Parity Code SIMON consumes less area and power than double modular redundancy SIMON and Reversed-SIMON, but yields a higher fault -detection-failure rate as the number of concurrent faults increases. In addition, the emerging technology, memristor, is explored to protect SIMON from passive attacks. Simulation results indicate that the memristor-based SIMON has a unique power characteristic that adds new challenges on secrete key extraction

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    Estimation model for software testing

    Get PDF
    Testing of software applications and assurance of compliance have become an essential part of Information Technology (IT) governance of organizations. Over the years, software testing has evolved into a specialization with its own practices and body of knowledge. Test estimation consists of the estimation of effort and working out the cost for a particular level of testing, using various methods, tools, and techniques. An incorrect estimation often leads to inadequate amount of testing which, in turn, can lead to failures of software systems when they are deployed in organizations. This research work has first established the state of the art of software test estimation, followed by the proposal of a Unified Framework for Software Test Estimation. Using this framework, a number of detailed estimation models have been designed next for functional testing. The ISBSG database has been used to investigate the estimation of software testing. The analysis of the ISBSG data has revealed three test productivity patterns representing economies and diseconomies of scale, based on which the characteristics of the corresponding projects were investigated. The three project groups related to the three productivity patterns were found to be statistically significant, and characterised by application domain, team size, elapsed time, and rigour of verification and validation throughout development. Within each project group, the variations in test efforts could be explained by the activities carried out during the development and processes adopted for testing, in addition to functional size. Two new independent variables, the quality of the development processes (DevQ) and the quality of testing processes (TestQ), were identified as influential in the estimation models. Portfolios of estimation models were built for different data sets using combinations of the three independent variables. At estimation time, an estimator could choose the project group by mapping the characteristics of the project to be estimated to the attributes of the project group, in order to choose the model closest to it. The quality of each model has been evaluated using established criteria such as R2, Adj R2, MRE, MedMRE and Maslow’s Cp. Models have been compared using their predictive performance, adopting new criteria proposed in this research work. Test estimation models using functional size measured in COSMIC Function Points have exhibited better quality and resulted in more accurate estimation, compared to functional size measured in IFPUG Function Points. A prototype software is now developed using statistical “R” programming language, incorporating portfolios of estimation models. This test estimation tool can be used by industry and academia for estimating test efforts

    New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs

    Full text link
    Tesis por compendio[EN] Relevance of electronics towards safety of common devices has only been growing, as an ever growing stake of the functionality is assigned to them. But of course, this comes along the constant need for higher performances to fulfill such functionality requirements, while keeping power and budget low. In this scenario, industry is struggling to provide a technology which meets all the performance, power and price specifications, at the cost of an increased vulnerability to several types of known faults or the appearance of new ones. To provide a solution for the new and growing faults in the systems, designers have been using traditional techniques from safety-critical applications, which offer in general suboptimal results. In fact, modern embedded architectures offer the possibility of optimizing the dependability properties by enabling the interaction of hardware, firmware and software levels in the process. However, that point is not yet successfully achieved. Advances in every level towards that direction are much needed if flexible, robust, resilient and cost effective fault tolerance is desired. The work presented here focuses on the hardware level, with the background consideration of a potential integration into a holistic approach. The efforts in this thesis have focused several issues: (i) to introduce additional fault models as required for adequate representativity of physical effects blooming in modern manufacturing technologies, (ii) to provide tools and methods to efficiently inject both the proposed models and classical ones, (iii) to analyze the optimum method for assessing the robustness of the systems by using extensive fault injection and later correlation with higher level layers in an effort to cut development time and cost, (iv) to provide new detection methodologies to cope with challenges modeled by proposed fault models, (v) to propose mitigation strategies focused towards tackling such new threat scenarios and (vi) to devise an automated methodology for the deployment of many fault tolerance mechanisms in a systematic robust way. The outcomes of the thesis constitute a suite of tools and methods to help the designer of critical systems in his task to develop robust, validated, and on-time designs tailored to his application.[ES] La relevancia que la electrónica adquiere en la seguridad de los productos ha crecido inexorablemente, puesto que cada vez ésta copa una mayor influencia en la funcionalidad de los mismos. Pero, por supuesto, este hecho viene acompañado de una necesidad constante de mayores prestaciones para cumplir con los requerimientos funcionales, al tiempo que se mantienen los costes y el consumo en unos niveles reducidos. En este escenario, la industria está realizando esfuerzos para proveer una tecnología que cumpla con todas las especificaciones de potencia, consumo y precio, a costa de un incremento en la vulnerabilidad a múltiples tipos de fallos conocidos o la introducción de nuevos. Para ofrecer una solución a los fallos nuevos y crecientes en los sistemas, los diseñadores han recurrido a técnicas tradicionalmente asociadas a sistemas críticos para la seguridad, que ofrecen en general resultados sub-óptimos. De hecho, las arquitecturas empotradas modernas ofrecen la posibilidad de optimizar las propiedades de confiabilidad al habilitar la interacción de los niveles de hardware, firmware y software en el proceso. No obstante, ese punto no está resulto todavía. Se necesitan avances en todos los niveles en la mencionada dirección para poder alcanzar los objetivos de una tolerancia a fallos flexible, robusta, resiliente y a bajo coste. El trabajo presentado aquí se centra en el nivel de hardware, con la consideración de fondo de una potencial integración en una estrategia holística. Los esfuerzos de esta tesis se han centrado en los siguientes aspectos: (i) la introducción de modelos de fallo adicionales requeridos para la representación adecuada de efectos físicos surgentes en las tecnologías de manufactura actuales, (ii) la provisión de herramientas y métodos para la inyección eficiente de los modelos propuestos y de los clásicos, (iii) el análisis del método óptimo para estudiar la robustez de sistemas mediante el uso de inyección de fallos extensiva, y la posterior correlación con capas de más alto nivel en un esfuerzo por recortar el tiempo y coste de desarrollo, (iv) la provisión de nuevos métodos de detección para cubrir los retos planteados por los modelos de fallo propuestos, (v) la propuesta de estrategias de mitigación enfocadas hacia el tratamiento de dichos escenarios de amenaza y (vi) la introducción de una metodología automatizada de despliegue de diversos mecanismos de tolerancia a fallos de forma robusta y sistemática. Los resultados de la presente tesis constituyen un conjunto de herramientas y métodos para ayudar al diseñador de sistemas críticos en su tarea de desarrollo de diseños robustos, validados y en tiempo adaptados a su aplicación.[CA] La rellevància que l'electrònica adquireix en la seguretat dels productes ha crescut inexorablement, puix cada volta més aquesta abasta una major influència en la funcionalitat dels mateixos. Però, per descomptat, aquest fet ve acompanyat d'un constant necessitat de majors prestacions per acomplir els requeriments funcionals, mentre es mantenen els costos i consums en uns nivells reduïts. Donat aquest escenari, la indústria està fent esforços per proveir una tecnologia que complisca amb totes les especificacions de potència, consum i preu, tot a costa d'un increment en la vulnerabilitat a diversos tipus de fallades conegudes, i a la introducció de nous tipus. Per oferir una solució a les noves i creixents fallades als sistemes, els dissenyadors han recorregut a tècniques tradicionalment associades a sistemes crítics per a la seguretat, que en general oferixen resultats sub-òptims. De fet, les arquitectures empotrades modernes oferixen la possibilitat d'optimitzar les propietats de confiabilitat en habilitar la interacció dels nivells de hardware, firmware i software en el procés. Tot i això eixe punt no està resolt encara. Es necessiten avanços a tots els nivells en l'esmentada direcció per poder assolir els objectius d'una tolerància a fallades flexible, robusta, resilient i a baix cost. El treball ací presentat se centra en el nivell de hardware, amb la consideració de fons d'una potencial integració en una estratègia holística. Els esforços d'esta tesi s'han centrat en els següents aspectes: (i) la introducció de models de fallada addicionals requerits per a la representació adequada d'efectes físics que apareixen en les tecnologies de fabricació actuals, (ii) la provisió de ferramentes i mètodes per a la injecció eficient del models proposats i dels clàssics, (iii) l'anàlisi del mètode òptim per estudiar la robustesa de sistemes mitjançant l'ús d'injecció de fallades extensiva, i la posterior correlació amb capes de més alt nivell en un esforç per retallar el temps i cost de desenvolupament, (iv) la provisió de nous mètodes de detecció per cobrir els reptes plantejats pels models de fallades proposats, (v) la proposta d'estratègies de mitigació enfocades cap al tractament dels esmentats escenaris d'amenaça i (vi) la introducció d'una metodologia automatitzada de desplegament de diversos mecanismes de tolerància a fallades de forma robusta i sistemàtica. Els resultats de la present tesi constitueixen un conjunt de ferramentes i mètodes per ajudar el dissenyador de sistemes crítics en la seua tasca de desenvolupament de dissenys robustos, validats i a temps adaptats a la seua aplicació.Espinosa García, J. (2016). New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73146TESISCompendi

    Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    Get PDF
    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a signicant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specic requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specic design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper conguration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations and minimizes the downtime due to errors. Finally, the possibility of using a model-based methodology for prototyping 3D user interfaces for control systems is investigated. The presented software is in continuous operation for the control of the CMS tracker while some general solutions have been adopted in the control systems of other CMS sub-detectors

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    A survey of app store analysis for software engineering

    Get PDF
    App Store Analysis studies information about applications obtained from app stores. App stores provide a wealth of information derived from users that would not exist had the applications been distributed via previous software deployment methods. App Store Analysis combines this non-technical information with technical information to learn trends and behaviours within these forms of software repositories. Findings from App Store Analysis have a direct and actionable impact on the software teams that develop software for app stores, and have led to techniques for requirements engineering, release planning, software design, security and testing. This survey describes and compares the areas of research that have been explored thus far, drawing out common aspects, trends and directions future research should take to address open problems and challenges
    corecore