428 research outputs found

    A selectional auto-encoder approach for document image binarization

    Get PDF
    Binarization plays a key role in the automatic information retrieval from document images. This process is usually performed in the first stages of document analysis systems, and serves as a basis for subsequent steps. Hence it has to be robust in order to allow the full analysis workflow to be successful. Several methods for document image binarization have been proposed so far, most of which are based on hand-crafted image processing strategies. Recently, Convolutional Neural Networks have shown an amazing performance in many disparate duties related to computer vision. In this paper we discuss the use of convolutional auto-encoders devoted to learning an end-to-end map from an input image to its selectional output, in which activations indicate the likelihood of pixels to be either foreground or background. Once trained, documents can therefore be binarized by parsing them through the model and applying a global threshold. This approach has proven to outperform existing binarization strategies in a number of document types.This work was partially supported by the Social Sciences and Humanities Research Council of Canada, the Spanish Ministerio de Ciencia, Innovación y Universidades through Juan de la Cierva - Formación grant (Ref. FJCI-2016-27873), and the Universidad de Alicante through grant GRE-16-04

    CT-Net:Cascade T-shape deep fusion networks for document binarization

    Get PDF
    Document binarization is a key step in most document analysis tasks. However, historical-document images usually suffer from various degradations, making this a very challenging processing stage. The performance of document image binarization has improved dramatically in recent years by the use of Convolutional Neural Networks (CNNs). In this paper, a dual-task, T-shaped neural network is proposed that has the main task of binarization and an auxiliary task of image enhancement. The neural network for enhancement learns the degradations in document images and the specific CNN-kernel features can be adapted towards the binarization task in the training process. In addition, the enhancement image can be considered as an improved version of the input image, which can be fed into the network for fine-tuning, making it possible to design a chained-cascade network (CT-Net). Experimental results on document binarization competition datasets (DIBCO datasets) and MCS dataset show that our proposed method outperforms competing state-of-the-art methods in most cases

    COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation

    Full text link
    The absence of large scale datasets with pixel-level supervisions is a significant obstacle for the training of deep convolutional networks for scene text segmentation. For this reason, synthetic data generation is normally employed to enlarge the training dataset. Nonetheless, synthetic data cannot reproduce the complexity and variability of natural images. In this paper, a weakly supervised learning approach is used to reduce the shift between training on real and synthetic data. Pixel-level supervisions for a text detection dataset (i.e. where only bounding-box annotations are available) are generated. In particular, the COCO-Text-Segmentation (COCO_TS) dataset, which provides pixel-level supervisions for the COCO-Text dataset, is created and released. The generated annotations are used to train a deep convolutional neural network for semantic segmentation. Experiments show that the proposed dataset can be used instead of synthetic data, allowing us to use only a fraction of the training samples and significantly improving the performances

    DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning

    Get PDF
    This paper presents a novel iterative deep learning framework and apply it for document enhancement and binarization. Unlike the traditional methods which predict the binary label of each pixel on the input image, we train the neural network to learn the degradations in document images and produce the uniform images of the degraded input images, which allows the network to refine the output iteratively. Two different iterative methods have been studied in this paper: recurrent refinement (RR) which uses the same trained neural network in each iteration for document enhancement and stacked refinement (SR) which uses a stack of different neural networks for iterative output refinement. Given the learned uniform and enhanced image, the binarization map can be easy to obtain by a global or local threshold. The experimental results on several public benchmark data sets show that our proposed methods provide a new clean version of the degraded image which is suitable for visualization and promising results of binarization using the global Otsu's threshold based on the enhanced images learned iteratively by the neural network.Comment: Accepted by Pattern Recognitio
    • …
    corecore