7,411 research outputs found

    Contextual Motifs: Increasing the Utility of Motifs using Contextual Data

    Full text link
    Motifs are a powerful tool for analyzing physiological waveform data. Standard motif methods, however, ignore important contextual information (e.g., what the patient was doing at the time the data were collected). We hypothesize that these additional contextual data could increase the utility of motifs. Thus, we propose an extension to motifs, contextual motifs, that incorporates context. Recognizing that, oftentimes, context may be unobserved or unavailable, we focus on methods to jointly infer motifs and context. Applied to both simulated and real physiological data, our proposed approach improves upon existing motif methods in terms of the discriminative utility of the discovered motifs. In particular, we discovered contextual motifs in continuous glucose monitor (CGM) data collected from patients with type 1 diabetes. Compared to their contextless counterparts, these contextual motifs led to better predictions of hypo- and hyperglycemic events. Our results suggest that even when inferred, context is useful in both a long- and short-term prediction horizon when processing and interpreting physiological waveform data.Comment: 10 pages, 7 figures, accepted for oral presentation at KDD '1

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    Risk models and scores for type 2 diabetes: Systematic review

    Get PDF
    This article is published under a Creative Commons Attribution Non Commercial (CC BY-NC 3.0) licence that allows reuse subject only to the use being non-commercial and to the article being fully attributed (http://creativecommons.org/licenses/by-nc/3.0).Objective - To evaluate current risk models and scores for type 2 diabetes and inform selection and implementation of these in practice. Design - Systematic review using standard (quantitative) and realist (mainly qualitative) methodology. Inclusion - criteria Papers in any language describing the development or external validation, or both, of models and scores to predict the risk of an adult developing type 2 diabetes. Data sources - Medline, PreMedline, Embase, and Cochrane databases were searched. Included studies were citation tracked in Google Scholar to identify follow-on studies of usability or impact. Data extraction - Data were extracted on statistical properties of models, details of internal or external validation, and use of risk scores beyond the studies that developed them. Quantitative data were tabulated to compare model components and statistical properties. Qualitative data were analysed thematically to identify mechanisms by which use of the risk model or score might improve patient outcomes. Results - 8864 titles were scanned, 115 full text papers considered, and 43 papers included in the final sample. These described the prospective development or validation, or both, of 145 risk prediction models and scores, 94 of which were studied in detail here. They had been tested on 6.88 million participants followed for up to 28 years. Heterogeneity of primary studies precluded meta-analysis. Some but not all risk models or scores had robust statistical properties (for example, good discrimination and calibration) and had been externally validated on a different population. Genetic markers added nothing to models over clinical and sociodemographic factors. Most authors described their score as “simple” or “easily implemented,” although few were specific about the intended users and under what circumstances. Ten mechanisms were identified by which measuring diabetes risk might improve outcomes. Follow-on studies that applied a risk score as part of an intervention aimed at reducing actual risk in people were sparse. Conclusion - Much work has been done to develop diabetes risk models and scores, but most are rarely used because they require tests not routinely available or they were developed without a specific user or clear use in mind. Encouragingly, recent research has begun to tackle usability and the impact of diabetes risk scores. Two promising areas for further research are interventions that prompt lay people to check their own diabetes risk and use of risk scores on population datasets to identify high risk “hotspots” for targeted public health interventions.Tower Hamlets, Newham, and City and Hackney primary care trusts and National Institute of Health Research

    Machine Learning for Physiological Time Series: Representing and Controlling Blood Glucose for Diabetes Management

    Full text link
    Type 1 diabetes is a chronic health condition affecting over one million patients in the US, where blood glucose (sugar) levels are not well regulated by the body. Researchers have sought to use physiological data (e.g., blood glucose measurements) collected from wearable devices to manage this disease, either by forecasting future blood glucose levels for predictive alarms, or by automating insulin delivery for blood glucose management. However, the application of machine learning (ML) to these data is hampered by latent context, limited supervision and complex temporal dependencies. To address these challenges, we develop and evaluate novel ML approaches in the context of i) representing physiological time series, particularly for forecasting blood glucose values and ii) decision making for when and how much insulin to deliver. When learning representations, we leverage the structure of the physiological sequence as an implicit information stream. In particular, we a) incorporate latent context when predicting adverse events by jointly modeling patterns in the data and the context those patterns occurred under, b) propose novel types of self-supervision to handle limited data and c) propose deep models that predict functions underlying trajectories to encode temporal dependencies. In the context of decision making, we use reinforcement learning (RL) for blood glucose management. Through the use of an FDA-approved simulator of the glucoregulatory system, we achieve strong performance using deep RL with and without human intervention. However, the success of RL typically depends on realistic simulators or experimental real-world deployment, neither of which are currently practical for problems in health. Thus, we propose techniques for leveraging imperfect simulators and observational data. Beyond diabetes, representing and managing physiological signals is an important problem. By adapting techniques to better leverage the structure inherent in the data we can help overcome these challenges.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163134/1/ifox_1.pd

    Predicting Insulin Pump Therapy Settings

    Get PDF
    Millions of people live with diabetes worldwide [7]. To mitigate some of the many symptoms associated with diabetes, an estimated 350,000 people in the United States rely on insulin pumps [17]. For many of these people, how effectively their insulin pump performs is the difference between sleeping through the night and a life threatening emergency treatment at a hospital. Three programmed insulin pump therapy settings governing effective insulin pump function are: Basal Rate (BR), Insulin Sensitivity Factor (ISF), and Carbohydrate Ratio (ICR). For many people using insulin pumps, these therapy settings are often not correct, given their physiological needs. While existing reinforcement learning models can predict actual physiological values for these settings, they require iteration and can be slow. The primary contribution of this research is to present a pipeline capable of providing instant predictions of close to actual patient physiological ISF, ICR, and BR from 30 days worth of data. In theory, this reduces patient waiting periods from roughly 6-8 weeks for existing reinforcement learning models to 30 days. This can serve as an aide in recommending pump therapy settings. Data used in this study include 1,000 simulated multivariate insulin pump time series. These time series were generated by a proprietary simulator developed by Tandem Diabetes Care. This multivariate time series data also integrates simulated continuous glucose monitor (CGM) data. This research proposes a pipeline for predicting actual patient BR, ISF, and ICR. Feature engineering, a component of this pipeline, included contextual consensus time series motif analysis. Models in the pipeline include time series native techniques such as Deep Convolutional Neural Networks (DNN) with a Long Short Term Memory input layers (LSTM) and aggregation based models such as Ridge regression and Lasso. Aggregation based ridge regression showed the most promising results, outperforming a naive model and a DNN model. For the data evaluated and with a 20% holdout test set, aggregate based ridge regression predicted the following normalized patient pump settings: ISF with a Mean Absolute Error of roughly 9.0%, ICR with a Mean Absolute Error of roughly 5% and BR with a Mean Absolute Error of roughly 6%. This is likely due to the reduction that aggregation based methods perform on each patient time series, reducing each one into a single tuple. This makes aggregation based methods less susceptible to noise and sparse signals. One limitation in this study is that the simulated data assumes a constant value of ISF, ICR, and BR over 24 hour periods for people with diabetes. In practice, this is not the case; ISF, ICR and BR fluctuate throughout the course of a day. A future consideration would be to use simulated data with non constant 24-hour ISF, ICR, and BR profiles. Insulin pumps greatly improve management and outcomes for people with diabetes. Ideally, by instantly improving programmed values of ISF, ICR, and BR, people relying on insulin pumps can spend less time worrying about their pump working ineffectively, and sleep through the night knowing it is less likely they will suffer a diabetes related medical emergency. To this end, it is the hope of the researchers that the ideas, pipelines, and inference presented are further explored and tested
    • …
    corecore