9,102 research outputs found

    Semantic Instance Segmentation with a Discriminative Loss Function

    Full text link
    Semantic instance segmentation remains a challenging task. In this work we propose to tackle the problem with a discriminative loss function, operating at the pixel level, that encourages a convolutional network to produce a representation of the image that can easily be clustered into instances with a simple post-processing step. The loss function encourages the network to map each pixel to a point in feature space so that pixels belonging to the same instance lie close together while different instances are separated by a wide margin. Our approach of combining an off-the-shelf network with a principled loss function inspired by a metric learning objective is conceptually simple and distinct from recent efforts in instance segmentation. In contrast to previous works, our method does not rely on object proposals or recurrent mechanisms. A key contribution of our work is to demonstrate that such a simple setup without bells and whistles is effective and can perform on par with more complex methods. Moreover, we show that it does not suffer from some of the limitations of the popular detect-and-segment approaches. We achieve competitive performance on the Cityscapes and CVPPP leaf segmentation benchmarks.Comment: Published at "Deep Learning for Robotic Vision", workshop at CVPR 201

    Combining Discrete and Neural Features for Sequence Labeling

    Full text link
    Neural network models have recently received heated research attention in the natural language processing community. Compared with traditional models with discrete features, neural models have two main advantages. First, they take low-dimensional, real-valued embedding vectors as inputs, which can be trained over large raw data, thereby addressing the issue of feature sparsity in discrete models. Second, deep neural networks can be used to automatically combine input features, and including non-local features that capture semantic patterns that cannot be expressed using discrete indicator features. As a result, neural network models have achieved competitive accuracies compared with the best discrete models for a range of NLP tasks. On the other hand, manual feature templates have been carefully investigated for most NLP tasks over decades and typically cover the most useful indicator pattern for solving the problems. Such information can be complementary the features automatically induced from neural networks, and therefore combining discrete and neural features can potentially lead to better accuracy compared with models that leverage discrete or neural features only. In this paper, we systematically investigate the effect of discrete and neural feature combination for a range of fundamental NLP tasks based on sequence labeling, including word segmentation, POS tagging and named entity recognition for Chinese and English, respectively. Our results on standard benchmarks show that state-of-the-art neural models can give accuracies comparable to the best discrete models in the literature for most tasks and combing discrete and neural features unanimously yield better results.Comment: Accepted by International Conference on Computational Linguistics and Intelligent Text Processing (CICLing) 2016, Apri

    ROSA: Robust Salient Object Detection against Adversarial Attacks

    Full text link
    Recently salient object detection has witnessed remarkable improvement owing to the deep convolutional neural networks which can harvest powerful features for images. In particular, state-of-the-art salient object detection methods enjoy high accuracy and efficiency from fully convolutional network (FCN) based frameworks which are trained from end to end and predict pixel-wise labels. However, such framework suffers from adversarial attacks which confuse neural networks via adding quasi-imperceptible noises to input images without changing the ground truth annotated by human subjects. To our knowledge, this paper is the first one that mounts successful adversarial attacks on salient object detection models and verifies that adversarial samples are effective on a wide range of existing methods. Furthermore, this paper proposes a novel end-to-end trainable framework to enhance the robustness for arbitrary FCN-based salient object detection models against adversarial attacks. The proposed framework adopts a novel idea that first introduces some new generic noise to destroy adversarial perturbations, and then learns to predict saliency maps for input images with the introduced noise. Specifically, our proposed method consists of a segment-wise shielding component, which preserves boundaries and destroys delicate adversarial noise patterns and a context-aware restoration component, which refines saliency maps through global contrast modeling. Experimental results suggest that our proposed framework improves the performance significantly for state-of-the-art models on a series of datasets.Comment: To be published in IEEE Transactions on Cybernetic

    Pedestrian Detection with Autoregressive Network Phases

    Full text link
    We present an autoregressive pedestrian detection framework with cascaded phases designed to progressively improve precision. The proposed framework utilizes a novel lightweight stackable decoder-encoder module which uses convolutional re-sampling layers to improve features while maintaining efficient memory and runtime cost. Unlike previous cascaded detection systems, our proposed framework is designed within a region proposal network and thus retains greater context of nearby detections compared to independently processed RoI systems. We explicitly encourage increasing levels of precision by assigning strict labeling policies to each consecutive phase such that early phases develop features primarily focused on achieving high recall and later on accurate precision. In consequence, the final feature maps form more peaky radial gradients emulating from the centroids of unique pedestrians. Using our proposed autoregressive framework leads to new state-of-the-art performance on the reasonable and occlusion settings of the Caltech pedestrian dataset, and achieves competitive state-of-the-art performance on the KITTI dataset

    A Comparative Study of Fruit Detection and Counting Methods for Yield Mapping in Apple Orchards

    Full text link
    We present new methods for apple detection and counting based on recent deep learning approaches and compare them with state-of-the-art results based on classical methods. Our goal is to quantify performance improvements by neural network-based methods compared to methods based on classical approaches. Additionally, we introduce a complete system for counting apples in an entire row. This task is challenging as it requires tracking fruits in images from both sides of the row. We evaluate the performances of three fruit detection methods and two fruit counting methods on six datasets. Results indicate that the classical detection approach still outperforms the deep learning based methods in the majority of the datasets. For fruit counting though, the deep learning based approach performs better for all of the datasets. Combining the classical detection method together with the neural network based counting approach, we achieve remarkable yield accuracies ranging from 95.56% to 97.83%.Comment: 28 page

    svcR: An R Package for Support Vector Clustering improved with Geometric Hashing applied to Lexical Pattern Discovery

    Full text link
    We present a new R package which takes a numerical matrix format as data input, and computes clusters using a support vector clustering method (SVC). We have implemented an original 2D-grid labeling approach to speed up cluster extraction. In this sense, SVC can be seen as an efficient cluster extraction if clusters are separable in a 2-D map. Secondly we showed that this SVC approach using a Jaccard-Radial base kernel can help to classify well enough a set of terms into ontological classes and help to define regular expression rules for information extraction in documents; our case study concerns a set of terms and documents about developmental and molecular biology

    Deep Multi-Center Learning for Face Alignment

    Full text link
    Facial landmarks are highly correlated with each other since a certain landmark can be estimated by its neighboring landmarks. Most of the existing deep learning methods only use one fully-connected layer called shape prediction layer to estimate the locations of facial landmarks. In this paper, we propose a novel deep learning framework named Multi-Center Learning with multiple shape prediction layers for face alignment. In particular, each shape prediction layer emphasizes on the detection of a certain cluster of semantically relevant landmarks respectively. Challenging landmarks are focused firstly, and each cluster of landmarks is further optimized respectively. Moreover, to reduce the model complexity, we propose a model assembling method to integrate multiple shape prediction layers into one shape prediction layer. Extensive experiments demonstrate that our method is effective for handling complex occlusions and appearance variations with real-time performance. The code for our method is available at https://github.com/ZhiwenShao/MCNet-Extension.Comment: This paper has been accepted by Neurocomputin

    Learning Representations for Automatic Colorization

    Full text link
    We develop a fully automatic image colorization system. Our approach leverages recent advances in deep networks, exploiting both low-level and semantic representations. As many scene elements naturally appear according to multimodal color distributions, we train our model to predict per-pixel color histograms. This intermediate output can be used to automatically generate a color image, or further manipulated prior to image formation. On both fully and partially automatic colorization tasks, we outperform existing methods. We also explore colorization as a vehicle for self-supervised visual representation learning.Comment: ECCV 2016 (Project page: http://people.cs.uchicago.edu/~larsson/colorization/

    An Improved Phrase-based Approach to Annotating and Summarizing Student Course Responses

    Full text link
    Teaching large classes remains a great challenge, primarily because it is difficult to attend to all the student needs in a timely manner. Automatic text summarization systems can be leveraged to summarize the student feedback, submitted immediately after each lecture, but it is left to be discovered what makes a good summary for student responses. In this work we explore a new methodology that effectively extracts summary phrases from the student responses. Each phrase is tagged with the number of students who raise the issue. The phrases are evaluated along two dimensions: with respect to text content, they should be informative and well-formed, measured by the ROUGE metric; additionally, they shall attend to the most pressing student needs, measured by a newly proposed metric. This work is enabled by a phrase-based annotation and highlighting scheme, which is new to the summarization task. The phrase-based framework allows us to summarize the student responses into a set of bullet points and present to the instructor promptly.Comment: 11 page

    graph2vec: Learning Distributed Representations of Graphs

    Full text link
    Recent works on representation learning for graph structured data predominantly focus on learning distributed representations of graph substructures such as nodes and subgraphs. However, many graph analytics tasks such as graph classification and clustering require representing entire graphs as fixed length feature vectors. While the aforementioned approaches are naturally unequipped to learn such representations, graph kernels remain as the most effective way of obtaining them. However, these graph kernels use handcrafted features (e.g., shortest paths, graphlets, etc.) and hence are hampered by problems such as poor generalization. To address this limitation, in this work, we propose a neural embedding framework named graph2vec to learn data-driven distributed representations of arbitrary sized graphs. graph2vec's embeddings are learnt in an unsupervised manner and are task agnostic. Hence, they could be used for any downstream task such as graph classification, clustering and even seeding supervised representation learning approaches. Our experiments on several benchmark and large real-world datasets show that graph2vec achieves significant improvements in classification and clustering accuracies over substructure representation learning approaches and are competitive with state-of-the-art graph kernels
    • …
    corecore