4 research outputs found

    Using Competing Bacterial Communication to Disassemble Biofilms

    Get PDF
    In recent years, bacterial infections have become a major public health concern due to their ability to cooperate between single and multiple species resisting to various forms of treatments (e.g., antibiotics). One form of protection is through biofilms, where the bacteria produce a protective medium known as the Extracellular Polymeric Substances (EPS). Researchers are pursuing new multi-disciplinary approaches to treating and kerb the evolving process of these infections through the biofilms, to lower the humans' antibiotic dependence that can result in the so-called \super- bugs". Although various solutions have been proposed to break biofilms, they are based on applying drugs or using nanoparticles. In this paper, we propose an alternative approach, where bacteria will cooperate and surround the biofilms to consume the nutrients. By hijacking the nutrients in the environment and blocking the ow from reaching the biofilms, this will lead to starvation, forcing them to break their structure. Preliminary simulations show that a small action radius of quorum sensing molecules is needed to maximise bacteria attraction to a particular location and create the protective wall. Therefore, this formation is capable of speeds up biofilm dispersal process by two hours

    Hydrogel-based Bio-nanomachine Transmitters for Bacterial Molecular Communications

    Get PDF
    peer-reviewedBacterial quorum sensing can be engineered with a view to the design of biotechnological applications based on their intrinsic role as a means of communication. We propose the creation of a positive feedback loop that will promote the emission of a superfolded green fluorescence protein from a bacterial population that will flow through hydrogel, which is used to encapsulate the cells. These engineered cells are heretofore referred to as bio-nanomachine transmitters and we show that for lower values of diffusion coefficient, a higher molecular output signal power can be produced, which supports the use of engineered bacteria contained within hydrogels for molecular communications systems. In addition, our wet lab results show the propagation of the molecular output signal, proving the feasibility of engineering a positive feedback loop to create a bio-nanomachine transmitter that can be used for biosensing applications.Science Foundation Irelan

    Computational Models for Trapping Ebola Virus Using Engineered Bacteria

    Get PDF
    The outbreak of Ebola virus in recent years has resulted in numerous research initiatives to seek new solutions to contain the virus. A number of approaches that have been investigated include new vaccines to boost the immune system. An alternative post-exposure treatment is presented in this paper. The proposed approach for clearing Ebola virus can be developed through a microfluidic attenuator, which contains the engineered bacteria that traps Ebola flowing through the blood onto its membrane. The paper presents the analysis of the chemical binding force between the virus and a genetically engineered bacterium considering the opposing forces acting on the attachment point, including hydrodynamic tension and drag force. To test the efficacy of the technique, simulations of bacterial motility within a confined area to trap the virus were performed. More than 60% of the displaced virus could be collected within 15 minutes. While the proposed approach currently focuses on in vitro environments for trapping the virus, the system can be further developed into the future for treatment whereby blood can be cycled out of the body into a microfluidic device that contains the engineered bacteria to trap viruses

    Internet-das-Bionano-Coisas: Conectando-se às Nanomáquinas

    Get PDF
    The Internet-of-things attracts the attention of many researchers in computer networks with the challenge of providing connectivity to a huge quantity of devices. This reality can be further complicated once again with the recent proposed Internet-of-bionano-things. Nanomachines, natural or synthetic, will be able to communicate to each other and to the Internet through the means of communication systems that are being developed at the nano-scale with the goal of cooperatively executing complex tasks. This technology requires a complete revision of the TCP/IP architecture to accommodate the requirements and demands of the nanonetworks. This chapter aims at introducing this research field to the computer network community, presenting the different types of communicating networks, an initial reformulation of the TCP/IP architecture, research challenges and the applications for the nanonetworks. This technology enables a revolution in the society and affects directly areas, such as medicine, agriculture, pollution and even industry
    corecore