52,570 research outputs found

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Customer churn prediction in telecom using machine learning and social network analysis in big data platform

    Full text link
    Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features' engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers' information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree "GBM" and Extreme Gradient Boosting "XGBOOST". However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model.Comment: 24 pages, 14 figures. PDF https://rdcu.be/budK

    Training Big Random Forests with Little Resources

    Full text link
    Without access to large compute clusters, building random forests on large datasets is still a challenging problem. This is, in particular, the case if fully-grown trees are desired. We propose a simple yet effective framework that allows to efficiently construct ensembles of huge trees for hundreds of millions or even billions of training instances using a cheap desktop computer with commodity hardware. The basic idea is to consider a multi-level construction scheme, which builds top trees for small random subsets of the available data and which subsequently distributes all training instances to the top trees' leaves for further processing. While being conceptually simple, the overall efficiency crucially depends on the particular implementation of the different phases. The practical merits of our approach are demonstrated using dense datasets with hundreds of millions of training instances.Comment: 9 pages, 9 Figure
    • …
    corecore