4 research outputs found

    Distributed Triangle Counting in the Graphulo Matrix Math Library

    Full text link
    Triangle counting is a key algorithm for large graph analysis. The Graphulo library provides a framework for implementing graph algorithms on the Apache Accumulo distributed database. In this work we adapt two algorithms for counting triangles, one that uses the adjacency matrix and another that also uses the incidence matrix, to the Graphulo library for server-side processing inside Accumulo. Cloud-based experiments show a similar performance profile for these different approaches on the family of power law Graph500 graphs, for which data skew increasingly bottlenecks. These results motivate the design of skew-aware hybrid algorithms that we propose for future work.Comment: Honorable mention in the 2017 IEEE HPEC's Graph Challeng

    Quickly Finding a Truss in a Haystack

    Get PDF
    The k-truss of a graph is a subgraph such that each edge is tightly connected to the remaining elements in the k-truss. The k-truss of a graph can also represent an important community in the graph. Finding the k-truss of a graph can be done in a polynomial amount of time, in contrast finding other subgraphs such as cliques. While there are numerous formulations and algorithms for finding the maximal k-truss of a graph, many of these tend to be computationally expensive and do not scale well. Many algorithms are iterative and use static graph triangle counting in each iteration of the graph. In this work we present a novel algorithm for finding both the k- truss of the graph (for a given k), as well as the maximal k-truss using a dynamic graph formulation. Our algorithm has two main benefits. 1) Unlike many algorithms that rerun the static graph triangle counting after the removal of nonconforming edges, we use a new dynamic graph formulation that only requires updating the edges affected by the removal. As our updates are local, we only do a fraction of the work compared to the other algorithms. 2) Our algorithm is extremely scalable and is able to concurrently detect deleted triangles in contrast to past sequential approaches. While our algorithm is architecture independent, we show a CUDA based implementation for NVIDIA GPUs. In numerous instances, our new algorithm is anywhere from 100X-10000X faster than the Graph Challenge benchmark. Furthermore, our algorithm shows significant speedups, in some cases over 70X, over a recently developed sequential and highly optimized algorithm

    A Systematic Survey of General Sparse Matrix-Matrix Multiplication

    Full text link
    SpGEMM (General Sparse Matrix-Matrix Multiplication) has attracted much attention from researchers in fields of multigrid methods and graph analysis. Many optimization techniques have been developed for certain application fields and computing architecture over the decades. The objective of this paper is to provide a structured and comprehensive overview of the research on SpGEMM. Existing optimization techniques have been grouped into different categories based on their target problems and architectures. Covered topics include SpGEMM applications, size prediction of result matrix, matrix partitioning and load balancing, result accumulating, and target architecture-oriented optimization. The rationales of different algorithms in each category are analyzed, and a wide range of SpGEMM algorithms are summarized. This survey sufficiently reveals the latest progress and research status of SpGEMM optimization from 1977 to 2019. More specifically, an experimentally comparative study of existing implementations on CPU and GPU is presented. Based on our findings, we highlight future research directions and how future studies can leverage our findings to encourage better design and implementation.Comment: 19 pages, 11 figures, 2 tables, 4 algorithm

    High-Performance and Power-Aware Graph Processing on GPUs

    Get PDF
    Graphs are a common representation in many problem domains, including engineering, finance, medicine, and scientific applications. Different problems map to very large graphs, often involving millions of vertices. Even though very efficient sequential implementations of graph algorithms exist, they become impractical when applied on such actual very large graphs. On the other hand, graphics processing units (GPUs) have become widespread architectures as they provide massive parallelism at low cost. Parallel execution on GPUs may achieve speedup up to three orders of magnitude with respect to the sequential counterparts. Nevertheless, accelerating efficient and optimized sequential algorithms and porting (i.e., parallelizing) their implementation to such many-core architectures is a very challenging task. The task is made even harder since energy and power consumption are becoming constraints in addition, or in same case as an alternative, to performance. This work aims at developing a platform that provides (I) a library of parallel, efficient, and tunable implementations of the most important graph algorithms for GPUs, and (II) an advanced profiling model to analyze both performance and power consumption of the algorithm implementations. The platform goal is twofold. Through the library, it aims at saving developing effort in the parallelization task through a primitive-based approach. Through the profiling framework, it aims at customizing such primitives by considering both the architectural details and the target efficiency metrics (i.e., performance or power)
    corecore