3 research outputs found

    Using AOP to Develop Architectural-Neutral Operating System Components

    No full text
    The architecture of an operating system, e.g. micro kernel or monolithic kernel, is usually seen as something static. Even during the long lasting evolution of operating system code it is extremely hard and, thus, expensive to change the architecture. However, our experience is that architectural evolution is often required and an architecture-neutral way to develop operating system components should be found. After analyzing why architectural flexibility is so difficult to achieve, we propose Aspect-Oriented Programming (AOP) as a solution. An example from the PURE OS family, which is implemented in an aspect-oriented programming language called AspectC++, will demonstrate the usefulness of the approach, which allows to separate the code that implements architectural properties from the core functionality. 1

    Advancing Operating Systems via Aspect-Oriented Programming

    Get PDF
    Operating system kernels are among the most complex pieces of software in existence to- day. Maintaining the kernel code and developing new functionality is increasingly compli- cated, since the amount of required features has risen significantly, leading to side ef fects that can be introduced inadvertedly by changing a piece of code that belongs to a completely dif ferent context. Software developers try to modularize their code base into separate functional units. Some of the functionality or “concerns” required in a kernel, however, does not fit into the given modularization structure; this code may then be spread over the code base and its implementation tangled with code implementing dif ferent concerns. These so-called “crosscutting concerns” are especially dif ficult to handle since a change in a crosscutting concern implies that all relevant locations spread throughout the code base have to be modified. Aspect-Oriented Software Development (AOSD) is an approach to handle crosscutting concerns by factoring them out into separate modules. The “advice” code contained in these modules is woven into the original code base according to a pointcut description, a set of interaction points (joinpoints) with the code base. To be used in operating systems, AOSD requires tool support for the prevalent procedu- ral programming style as well as support for weaving aspects. Many interactions in kernel code are dynamic, so in order to implement non-static behavior and improve performance, a dynamic weaver that deploys and undeploys aspects at system runtime is required. This thesis presents an extension of the “C” programming language to support AOSD. Based on this, two dynamic weaving toolkits – TOSKANA and TOSKANA-VM – are presented to permit dynamic aspect weaving in the monolithic NetBSD kernel as well as in a virtual- machine and microkernel-based Linux kernel running on top of L4. Based on TOSKANA, applications for this dynamic aspect technology are discussed and evaluated. The thesis closes with a view on an aspect-oriented kernel structure that maintains coherency and handles crosscutting concerns using dynamic aspects while enhancing de- velopment methods through the use of domain-specific programming languages

    Operating system fault tolerance support for real-time embedded applications

    Get PDF
    Tese de doutoramento em Electrónica Industrial (ramo de conhecimento em Informática Industrial)Fault tolerance is a means of achieving high dependability for critical and highavailability systems. Despite the efforts to prevent and remove faults during the development of these systems, the application of fault tolerance is usually required because the hardware may fail during system operation and software faults are very hard to eliminate completely. One of the difficulties in implementing fault tolerance techniques is the lack of support from operating systems and middleware. In most fault tolerant projects, the programmer has to develop a fault tolerance implementation for each application. This strong customization makes the fault-tolerant software costly and difficult to implement and maintain. In particular, for small-scale embedded systems, the introduction of fault tolerance techniques may also have impact on their restricted resources, such as processing power and memory size. The purpose of this research is to provide fault tolerance support for real-time applications in small-scale embedded systems. The main approach of this thesis is to develop and integrate a customizable and extendable fault tolerance framework into a real-time operating system, in order to fulfill the needs of a large range of dependable applications. Special attention is taken to allow the coexistence of fault tolerance with real-time constraints. The utilization of the proposed framework features several advantages over ad-hoc implementations, such as simplifying application-level programming and improving the system configurability and maintainability. In addition, this thesis also investigates the application of aspect-oriented techniques to the development of real-time embedded fault-tolerant software. Aspect- Oriented Programming (AOP) is employed to modularize all fault tolerant source code, following the principle of separation of concerns, and to integrate the proposed framework into the operating system. Two case studies are used to evaluate the proposed implementation in terms of performance and resource costs. The results show that the overheads related to the framework application are acceptable and the ones related to the AOP implementation are negligible.Tolerância a falhas é um meio de obter-se alta confiabilidade para sistemas críticos e de elevada disponibilidade. Apesar dos esforços para prevenir e remover falhas durante o desenvolvimento destes sistemas, a aplicação de tolerância a falhas é normalmente necessária, já que o hardware pode falhar durante a operação do sistema e falhas de software são muito difíceis de eliminar completamente. Uma das dificuldades na implementação de técnicas de tolerância a falhas é a falta de suporte por parte dos sistemas operativos e middleware. Na maioria dos projectos tolerantes a falhas, o programador deve desenvolver uma implementação de tolerância a falhas para cada aplicação. Esta elevada adaptação torna o software tolerante a falhas dispendioso e difícil de implementar e manter. Em particular, para sistemas embebidos de pequena escala, a introdução de técnicas de tolerância a falhas pode também ter impacto nos seus restritos recursos, tais como capacidade de processamento e tamanho da memória. O propósito desta tese é prover suporte à tolerância a falhas para aplicações de tempo real em sistemas embebidos de pequena escala. A principal abordagem utilizada nesta tese foi desenvolver e integrar uma framework tolerante a falhas, customizável e extensível, a um sistema operativo de tempo real, a fim de satisfazer às necessidades de uma larga gama de aplicações confiáveis. Especial atenção foi dada para permitir a coexistência de tolerância a falhas com restrições de tempo real. A utilização da framework proposta apresenta diversas vantagens sobre implementações ad-hoc, tais como simplificar a programação a nível da aplicação e melhorar a configurabilidade e a facilidade de manutenção do sistema. Além disto, esta tese também investiga a aplicação de técnicas orientadas a aspectos no desenvolvimento de software tolerante a falhas, embebido e de tempo real. A Programação Orientada a Aspectos (POA) é empregada para segregar em módulos isolados todo o código fonte tolerante a falhas, seguindo o princípio da separação de interesses, e para integrar a framework proposta com o sistema operativo. Dois casos de estudo são utilizados para avaliar a implementação proposta em termos de desempenho e utilização de recursos. Os resultados mostram que os acréscimos de recursos relativos à aplicação da framework são aceitáveis e os relativos à implementação POA são insignificantes
    corecore