28,223 research outputs found

    Optimal Multiuser Scheduling Schemes for Simultaneous Wireless Information and Power Transfer

    Full text link
    In this paper, we study the downlink multiuser scheduling problem for systems with simultaneous wireless information and power transfer (SWIPT). We design optimal scheduling algorithms that maximize the long-term average system throughput under different fairness requirements, such as proportional fairness and equal throughput fairness. In particular, the algorithm designs are formulated as non-convex optimization problems which take into account the minimum required average sum harvested energy in the system. The problems are solved by using convex optimization techniques and the proposed optimization framework reveals the tradeoff between the long-term average system throughput and the sum harvested energy in multiuser systems with fairness constraints. Simulation results demonstrate that substantial performance gains can be achieved by the proposed optimization framework compared to existing suboptimal scheduling algorithms from the literature.Comment: Accepted for presentation at the European Signal Processing Conference 201

    Multi-user Scheduling Schemes for Simultaneous Wireless Information and Power Transfer

    Full text link
    In this paper, we study the downlink multi-user scheduling problem for a time-slotted system with simultaneous wireless information and power transfer. In particular, in each time slot, a single user is scheduled to receive information, while the remaining users opportunistically harvest the ambient radio frequency (RF) energy. We devise novel scheduling schemes in which the tradeoff between the users' ergodic capacities and their average amount of harvested energy can be controlled. To this end, we modify two fair scheduling schemes used in information-only transfer systems. First, proportionally fair maximum normalized signal-to-noise ratio (N-SNR) scheduling is modified by scheduling the user having the jth ascendingly ordered (rather than the maximum) N-SNR. We refer to this scheme as order-based N-SNR scheduling. Second, conventional equal-throughput (ET) fair scheduling is modified by scheduling the user having the minimum moving average throughput among the set of users whose N-SNR orders fall into a certain set of allowed orders Sa (rather than the set of all users). We refer to this scheme as order-based ET scheduling. The feasibility conditions required for the users to achieve ET with this scheme are also derived. We show that the smaller the selection order j for the order-based N-SNR scheme, and the lower the orders in Sa for the order-based ET scheme, the higher the average amount of energy harvested by the users at the expense of a reduction in their ergodic capacities. We analyze the performance of the considered scheduling schemes for independent and non-identically distributed (i.n.d.) Ricean fading channels, and provide closed-form results for the special case of i.n.d. Rayleigh fading.Comment: 6 pages, 3 figures. Submitted for possible conference publicatio

    Power Allocation and Scheduling for SWIPT Systems with Non-linear Energy Harvesting Model

    Full text link
    In this paper, we design a resource allocation algorithm for multiuser simultaneous wireless information and power transfer systems for a realistic non-linear energy harvesting (EH) model. In particular, the algorithm design is formulated as a non-convex optimization problem for the maximization of the long-term average total harvested power at EH receivers subject to quality of service requirements for information decoding receivers. To obtain a tractable solution, we transform the corresponding non-convex sum-of-ratios objective function into an equivalent objective function in parametric subtractive form. This leads to a computationally efficient iterative resource allocation algorithm. Numerical results reveal a significant performance gain that can be achieved if the resource allocation algorithm design is based on the non-linear EH model instead of the traditional linear model.Comment: Accepted for presentation at the IEEE ICC 201
    • …
    corecore