371 research outputs found

    Fairness Comparison of Uplink NOMA and OMA

    Full text link
    In this paper, we compare the resource allocation fairness of uplink communications between non-orthogonal multiple access (NOMA) schemes and orthogonal multiple access (OMA) schemes. Through characterizing the contribution of the individual user data rate to the system sum rate, we analyze the fundamental reasons that NOMA offers a more fair resource allocation than that of OMA in asymmetric channels. Furthermore, a fairness indicator metric based on Jain's index is proposed to measure the asymmetry of multiuser channels. More importantly, the proposed metric provides a selection criterion for choosing between NOMA and OMA for fair resource allocation. Based on this discussion, we propose a hybrid NOMA-OMA scheme to further enhance the users fairness. Simulation results confirm the accuracy of the proposed metric and demonstrate the fairness enhancement of the proposed hybrid NOMA-OMA scheme compared to the conventional OMA and NOMA schemes.Comment: 6 pages, accepted for publication, VTC 2017, Spring, Sydne

    Investigation on Evolving Single-Carrier NOMA into Multi-Carrier NOMA in 5G

    Full text link
    © 2013 IEEE. Non-orthogonal multiple access (NOMA) is one promising technology, which provides high system capacity, low latency, and massive connectivity, to address several challenges in the fifth-generation wireless systems. In this paper, we first reveal that the NOMA techniques have evolved from single-carrier NOMA (SC-NOMA) into multi-carrier NOMA (MC-NOMA). Then, we comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NOMA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access (PDMA). Meanwhile, we consider that the research challenges of SCMA and PDMA might be addressed with the stimulation of the advanced and matured progress in SC-NOMA. Finally, yet importantly, we investigate the emerging applications, and point out the future research trends of the MC-NOMA techniques, which could be straightforwardly inspired by the various deployments of SC-NOMA

    Optimal Joint Power and Subcarrier Allocation for MC-NOMA Systems

    Full text link
    In this paper, we investigate the resource allocation algorithm design for multicarrier non-orthogonal multiple access (MC-NOMA) systems. The proposed algorithm is obtained from the solution of a non-convex optimization problem for the maximization of the weighted system throughput. We employ monotonic optimization to develop the optimal joint power and subcarrier allocation policy. The optimal resource allocation policy serves as a performance benchmark due to its high complexity. Furthermore, to strike a balance between computational complexity and optimality, a suboptimal scheme with low computational complexity is proposed. Our simulation results reveal that the suboptimal algorithm achieves a close-to-optimal performance and MC-NOMA employing the proposed resource allocation algorithm provides a substantial system throughput improvement compared to conventional multicarrier orthogonal multiple access (MC-OMA).Comment: Submitted to Globecom 201

    Stochastic Geometry Based Performance Study in 5G Wireless Networks

    Get PDF
    As the complexity of modern cellular networks continuously increases along with the evolution of technologies and the quick explosion of mobile data traffic, conventional large scale system level simulations and analytical tools become either too complicated or less tractable and accurate. Therefore, novel analytical models are actively pursued. In recent years, stochastic geometry models have been recognized as powerful tools to analyze the key performance metrics of cellular networks. In this dissertation, stochastic geometry based analytical models are developed to analyze the performance of some key technologies proposed for 5G mobile networks. Particularly, Device-to-Device (D2D) communication, Non-orthogonal multiple access (NOMA), and ultra-dense networks (UDNs) are investigated and analyzed by stochastic geometry models, more specifically, Poisson Point Process (PPP) models. D2D communication enables direct communication between mobile users in proximity to each other bypassing base station (BS). Embedding D2D communication into existing cellular networks brings many benefits such as improving spectrum efficiency, decreasing power energy consumption, and enabling novel location-based services. However, these benefits may not be fully exploited if the co-channel interference among D2D users and cellular users is not properly tackled. In this dissertation, various frequency reuse and power control schemes are proposed, aiming at mitigating the interference between D2D users and conventional cellular users. The performance gain of proposed schemes is analyzed on a system modeled by a 2-tier PPP and validated by numerical simulations. NOMA is a promising radio access technology for 5G cellular networks. Different with widely applied orthogonal multiple access (OMA) such as orthogonal frequency division multiple access (OFDMA) and single carrier frequency division multiple access (SC-FDMA), NOMA allows multiple users to use the same frequency/time resource and offers many advantages such as improving spectral efficiency, enhancing connectivity, providing higher cell-edge throughput, and reducing transmission latency. Although some initial performance analysis has been done on NOMA with single cell scenario, the system level performance of NOMA in a multi-cell scenario is not investigated in existing work. In this dissertation, analytical frameworks are developed to evaluate the performance of a wireless network with NOMA on both downlink and uplink. Distinguished from existing publications on NOMA, the framework developed in this dissertation is the first one that takes inter-cell interference into consideration. UDN is another key technology for 5G wireless networks to achieve high capacity and coverage. Due to the existence of line-of-sight (LoS)/non-line-of-sight (NLoS) propagation and bounded path loss behavior in UDN networks, the tractability of the original PPP model diminishes when analyzing the performance of UDNs. Therefore, a dominant BS (base station)-based approximation model is developed in this dissertation. By applying reasonable mathematical approximations, the tractability of the PPP model is preserved and the closed form solution can be derived. The numerical results demonstrate that the developed analytical model is accurate in a wide range of network densities. The analysis conducted in this dissertation demonstrates that stochastic geometry models can serve as powerful tools to analyze the performance of 5G technologies in a dense wireless network deployment. The frameworks developed in this dissertation provide general yet powerful analytical tools that can be readily extended to facilitate other research in wireless networks
    • …
    corecore