26,323 research outputs found

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    The kindest cut: Enhancing the user experience of mobile tv through adequate zooming

    Get PDF
    The growing market of Mobile TV requires automated adaptation of standard TV footage to small size displays. Especially extreme long shots (XLS) depicting distant objects can spoil the user experience, e.g. in soccer content. Automated zooming schemes can improve the visual experience if the resulting footage meets user expectations in terms of the visual detail and quality but does not omit valuable context information. Current zooming schemes are ignorant of beneficial zoom ranges for a given target size when applied to standard definition TV footage. In two experiments 84 participants were able to switch between original and zoom enhanced soccer footage at three sizes - from 320x240 (QVGA) down to 176x144 (QCIF). Eye tracking and subjective ratings showed that zoom factors between 1.14 and 1.33 were preferred for all sizes. Interviews revealed that a zoom factor of 1.6 was too high for QVGA content due to low perceived video quality, but beneficial for QCIF size. The optimal zoom depended on the target display size. We include a function to compute the optimal zoom for XLS depending on the target device size. It can be applied in automatic content adaptation schemes and should stimulate further research on the requirements of different shot types in video coding

    On the impact of video stalling and video quality in the case of camera switching during adaptive streaming of sports content

    Get PDF
    The widespread usage of second screens, in combination with mobile video streaming technologies like HTTP Adaptive Streaming (HAS), enable new means for taking end-users' Quality of Experience (QoE) to the next level. For sports events, these technological evolutions can, for example, enhance the overall engagement of remote fans or give them more control over the content. In this paper, we consider the case of adaptively streaming multi-camera sports content to tablet devices, enabling the end-user to dynamically switch cameras. Our goal is to subjectively evaluate the trade-off between video stalling duration (as a result of requesting another camera feed) and initial video quality of the new feed. Our results show that short video stallings do not significantly influence overall quality ratings, that quality perception is highly influenced by the video quality at the moment of camera switching and that large quality fluctuations should be avoided

    Mobile information access in the real world: A story of three wireless devices

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2008 ElsevierThe importance of the user perspective to the wireless information access experience cannot be understated: simply put, users will not indulge in devices that are perceived to be difficult to use and in technologies that do not offer quality infotainment – combined information and entertainment – content. In this paper, we investigate the impact that mobile devices have on the user wireless infotainment access experience in practice. To this end, we have undertaken an empirical study placed in a ‘real-world’ setting, in which participants undertook typical infotainment access tasks on three different wireless-enabled mobile devices: a laptop, a personal digital assistant and a head mounted display device. Results show that, with the exception of participants’ level of self-consciousness when using such devices in public environments, the user wireless information access experience is generally unaffected by device type. Location was shown, though, to be a significant factor when users engage in tasks such as listening to online music or navigation. Whilst the interaction between device and environment was found to influence entertainment-related tasks in our experiments, the informational ones were not affected. However, the interaction effects between device and user type was found to affect both types of tasks. Lastly, a user’s particular computing experience was shown to influence the perceived ease of wireless information access only in the case of online searching, irrespective of whether this is done for primarily informational purposes or entertainment ones

    The Big Picture on Small Screens Delivering Acceptable Video Quality in Mobile TV

    Get PDF
    Mobile TV viewers can change the viewing distance and (on some devices) scale the picture to their preferred viewing ratio, trading off size for angular resolution. We investigated optimal trade-offs between size and resolution through a series of studies. Participants selected their preferred size and rated the acceptability of the visual experience on a 200ppi device at a 4: 3 aspect ratio. They preferred viewing ratios similar to living room TV setups regardless of the much lower resolution: at a minimum 14 pixels per degree. While traveling on trains people required videos with a height larger than 35mm

    Optimized Adaptive Streaming Representations based on System Dynamics

    Get PDF
    Adaptive streaming addresses the increasing and heterogenous demand of multimedia content over the Internet by offering several encoded versions for each video sequence. Each version (or representation) has a different resolution and bit rate, aimed at a specific set of users, like TV or mobile phone clients. While most existing works on adaptive streaming deal with effective playout-control strategies at the client side, we take in this paper a providers' perspective and propose solutions to improve user satisfaction by optimizing the encoding rates of the video sequences. We formulate an integer linear program that maximizes users' average satisfaction, taking into account the network dynamics, the video content information, and the user population characteristics. The solution of the optimization is a set of encoding parameters that permit to create different streams to robustly satisfy users' requests over time. We simulate multiple adaptive streaming sessions characterized by realistic network connections models, where the proposed solution outperforms commonly used vendor recommendations, in terms of user satisfaction but also in terms of fairness and outage probability. The simulation results further show that video content information as well as network constraints and users' statistics play a crucial role in selecting proper encoding parameters to provide fairness a mong users and to reduce network resource usage. We finally propose a few practical guidelines that can be used to choose the encoding parameters based on the user base characteristics, the network capacity and the type of video content

    The sweet spot: How people trade off size and definition on mobile devices

    Get PDF
    Mobile TV can deliver up-to-date content to users on the move. But it is currently unclear how to best adapt higher resolution TV content. In this paper, we describe a laboratory study with 35 participants who watched short clips of different content and shot types on a 200ppi PDA display at a resolution of either 120x90 or 168x128. Participants selected their preferred size and rated the acceptability of the visual experience. The preferred viewing ratio depended on the resolution and had to be at least 9.8H. The minimal angular resolution people required and which limited the up-scaling factor was 14 pixels per degree. Extreme long shots were best when depicted actors were at least 0.7° high. A second study researched the ecological validity of previous lab results by comparing them to results from the field. Image size yielded more value for users in the field than was apparent from lab results. In conclusion, current prediction models based on preferred viewing distances for TV and large displays do not predict viewing preferences on mobile devices. Our results will help to further the understanding of multimedia perception and service designers to deliver both economically viable and enjoyable experiences
    corecore