15,041 research outputs found

    Earthquake Early Warning and Beyond: Systems Challenges in Smartphone-based Seismic Network

    Full text link
    Earthquake Early Warning (EEW) systems can effectively reduce fatalities, injuries, and damages caused by earthquakes. Current EEW systems are mostly based on traditional seismic and geodetic networks, and exist only in a few countries due to the high cost of installing and maintaining such systems. The MyShake system takes a different approach and turns people's smartphones into portable seismic sensors to detect earthquake-like motions. However, to issue EEW messages with high accuracy and low latency in the real world, we need to address a number of challenges related to mobile computing. In this paper, we first summarize our experience building and deploying the MyShake system, then focus on two key challenges for smartphone-based EEW (sensing heterogeneity and user/system dynamics) and some preliminary exploration. We also discuss other challenges and new research directions associated with smartphone-based seismic network.Comment: 6 pages, conference paper, already accepted at hotmobile 201

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    Group-In: Group Inference from Wireless Traces of Mobile Devices

    Full text link
    This paper proposes Group-In, a wireless scanning system to detect static or mobile people groups in indoor or outdoor environments. Group-In collects only wireless traces from the Bluetooth-enabled mobile devices for group inference. The key problem addressed in this work is to detect not only static groups but also moving groups with a multi-phased approach based only noisy wireless Received Signal Strength Indicator (RSSIs) observed by multiple wireless scanners without localization support. We propose new centralized and decentralized schemes to process the sparse and noisy wireless data, and leverage graph-based clustering techniques for group detection from short-term and long-term aspects. Group-In provides two outcomes: 1) group detection in short time intervals such as two minutes and 2) long-term linkages such as a month. To verify the performance, we conduct two experimental studies. One consists of 27 controlled scenarios in the lab environments. The other is a real-world scenario where we place Bluetooth scanners in an office environment, and employees carry beacons for more than one month. Both the controlled and real-world experiments result in high accuracy group detection in short time intervals and sampling liberties in terms of the Jaccard index and pairwise similarity coefficient.Comment: This work has been funded by the EU Horizon 2020 Programme under Grant Agreements No. 731993 AUTOPILOT and No.871249 LOCUS projects. The content of this paper does not reflect the official opinion of the EU. Responsibility for the information and views expressed therein lies entirely with the authors. Proc. of ACM/IEEE IPSN'20, 202

    Smartphone-based Calorie Estimation From Food Image Using Distance Information

    Get PDF
    Personal assistive systems for diet control can play a vital role to combat obesity. As smartphones have become inseparable companions for a large number of people around the world, designing smartphone-based system is perhaps the best choice at the moment. Using this system people can take an image of their food right before eating, know the calorie content based on the food items on the plate. In this paper, we propose a simple method that ensures both user flexibility and high accuracy at the same time. The proposed system employs capturing food images with a fixed posture and estimating the volume of the food using simple geometry. The real world experiments on different food items chosen arbitrarily show that the proposed system can work well for both regular and liquid food items
    corecore