223 research outputs found

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201

    Weighted Fair Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is considered. This model is known as physical layer multicasting to multiple co-channel groups. In this context, the practical constraint of a maximum permitted power level radiated by each antenna is addressed. The per-antenna power constrained system is optimized in a maximum fairness sense with respect to predetermined quality of service weights. In other words, the worst scaled user is boosted by maximizing its weighted signal-to-interference plus noise ratio. A detailed solution to tackle the weighted max-min fair multigroup multicast problem under per-antenna power constraints is therefore derived. The implications of the novel constraints are investigated via prominent applications and paradigms. What is more, robust per-antenna constrained multigroup multicast beamforming solutions are proposed. Finally, an extensive performance evaluation quantifies the gains of the proposed algorithm over existing solutions and exhibits its accuracy over per-antenna power constrained systems.Comment: Under review in IEEE Transactions in Signal Processin

    Multibeam Joint Processing in Satellite Communications

    Get PDF
    Cooperative Satellite Communications (SatComs) involve multi-antenna satellites enabled for the joint transmission and reception of signals. This joint processing of baseband signals is realized amongst the distinct but interconnected antennas. Advanced signal processing techniques –namely precoding and Multiuser Detection (MUD)– are herein examined in the multibeam satellite context. The aim of this thesis is to establish the prominence of such methods in the next generation of broadband satellite networks. To this end, two approaches are followed. On one hand, the performance of the well established and theoretically concrete MUD is analysed over the satellite environments. On the other, optimal signal processing designs are developed and evaluated for the forward link. In more detail, the present dissertation begins by introducing the topic of multibeam joint processing. Thus, the most significant practical constraints that hinder the application of advanced interference mitigation techniques in satellite networks are identified and discussed. Prior to presenting the contributions of this work, the multi-antenna joint processing problem is formulated using the generic Multiuser (MU) Multiple InputMultiple Output (MIMO) baseband signal model. This model is also extended to apply in the SatComs context. A detailed presentation of the related work, starting from a generic signal processing perspective and then focusing on the SatComs field, is then given. With this review, the main open research topics are identified. Following the comprehensive literature review, the first contribution of this work, is presented. This involves the performance evaluation of MUD in the Return Link (RL) of multiuser multibeam SatComs systems. Novel, analytical expressions are derived to describe the information theoretic channel capacity as well as the performance of practical receivers over realistic satellite channels. Based on the derived formulas, significant insights for the design of the RL of next generation cooperative satellite systems are provided. In the remaining of this thesis, the focus is set on the Forward Link (FL) of multibeam SatComs, where precoding, combined with aggressive frequency reuse configurations, are proposed to enhance the offered throughput. In this context, the alleviation of practical constraints imposed by the satellite channel is the main research challenge. Focusing on the rigid framing structure of the legacy SatCom standards, the fundamental frame-based precoding problem is examined. Based on the necessity to serve multiple users by a single transmission, the connection of the frame-based precoding and the fundamental signal processing problem of physical layer multigroup multicasting is established. In this framework and to account for the power limitations imposed by a dedicated High Power Amplifier (HPA) per transmit element, a novel solution for multigroup multicasting under Per Anntenna Constraints (PACs) is derived. Therefore, the gains offered by multigroup multicasting in frame-based systems are quantified over an accurate simulation setting. Finally, advanced multicast and interference aware scheduling algorithms are proposed to glean significant gains in the rich multiuser satellite environment. The thesis concludes with the main research findings and the identification of new research challenges, which will pave the way for the deployment of cooperative multibeam satellite systems

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces

    New Generation Cooperative and Cognitive Dual Satellite Systems: Performance Evaluation

    Get PDF
    Investigating innovative satellite architectures with enhanced system through- put is one of the most important challenges towards realizing the next generation of satellite communication systems. In this context, we study two advanced architectures, namely cooperative and cognitive satellite systems. These designs allow the spectral coexistence of two multibeam satellites over a common coverage area with the overlapping beam patterns. In the cooperative dual satellite system, we consider coordination between two coexisting transmitters in order to reduce the intersatellite interference. This is achieved by employing adequate user scheduling, based on the channel state information of each user. To this end, a semi-orthogonal interference aware scheduling algorithm is applied. Further, in the cognitive dual satellite system, we employ a cognitive beamhopping technique assuming that the secondary gateway is aware of the primary's beamhopping pattern. Moreover, we compare the performances of these schemes with those of the conventional multi- beam and overlapping dual satellite systems in terms of spectral efficiency, power efficiency and user fairness. Finally, we provide several insights on the performance of these schemes and provide interesting future works in these domains

    Constructive Multiuser Interference in Symbol Level Precoding for the MISO Downlink Channel

    Get PDF
    This paper investigates the problem of interference among the simultaneous multiuser transmissions in the downlink of multiple antennas systems. Using symbol level precoding, a new approach towards the multiuser interference is discussed along this paper. The concept of exploiting the interference between the spatial multiuser transmissions by jointly utilizing the data information (DI) and channel state information (CSI), in order to design symbol-level precoders, is proposed. In this direction, the interference among the data streams is transformed under certain conditions to useful signal that can improve the signal to interference noise ratio (SINR) of the downlink transmissions. We propose a maximum ratio transmission (MRT) based algorithm that jointly exploits DI and CSI to glean the benefits from constructive multiuser interference. Subsequently, a relation between the constructive interference downlink transmission and physical layer multicasting is established. In this context, novel constructive interference precoding techniques that tackle the transmit power minimization (min power) with individual SINR constraints at each user's receivers is proposed. Furthermore, fairness through maximizing the weighted minimum SINR (max min SINR) of the users is addressed by finding the link between the min power and max min SINR problems. Moreover, heuristic precoding techniques are proposed to tackle the weighted sum rate problem. Finally, extensive numerical results show that the proposed schemes outperform other state of the art techniques.Comment: Submitted to IEEE Transactions on Signal Processin
    • …
    corecore