8,902 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    PERFORMANCE EVALUATION OF WIRELESS SENSOR NETWORK ROUTING PROTOCOL FOR VOLCANO ACTIVITY MONITORIN

    Get PDF
    As a country with the most volcanoes in the world, the Indonesian government must provide accurate and up-to-date information on the activity of active volcanoes. Until 2021, only 59% of mountains were directly monitored. Monitoring volcanic activity is not an easy thing to do. Visual observation alone is not enough, and instrumental comment is needed. Wireless Sensor Network (WSN) is a new opportunity to conduct a real-time and low-cost monitoring system for volcanic activity. However, the placement of independent WSN sensors in locations that are difficult to access creates new reliability and energy consumption problems. Therefore, we need a reliable communication line design for data transmission and path determination that does not drain sensor energy. This study specifically evaluates the performance of several routing protocols on WSN (proactive, reactive, and hybrid) to provide recommendations for the best routing design for volcanic activity monitoring needs. The simulation results of 6 WSN routing protocols using the NS-2 simulator show that the proactive protocol provides the smallest delay value, and the reactive protocol shows the highest data transmission success ratio but with the best residual energy. In contrast, the hybrid protocol could maintain a stable throughput value during data transmission

    Big Data Management for Cloud-Enabled Geological Information Services

    Get PDF

    Mix Ratio of High-strength Concrete Based on Chaotic Particle Swarm Optimization

    Get PDF
    The optimization of the mix ratio of high-strength and high-performance concrete needs to solve the variable design problem of many factors. The purpose of this paper is to study the optimal design of high-strength concrete mix proportions based on chaotic particle swarm optimization. This paper introduces the research background and significance of this paper, the research status of deep learning prediction, concrete compressive strength prediction and intelligent design of concrete mix ratio at home and abroad, and introduces the relevant theoretical basis, mainly including the concept of high strength concrete and chaotic particle swarm algorithm. A multi-objective optimization model for high-strength and high-performance concrete based on experimental data is proposed. Each part of the model is introduced in detail, and the system established by the intelligent design model of concrete mix ratio proposed in this paper is firstly introduced briefly, then the various functions of the system are explained, and finally the system is given method, and select a real building concrete production mix data set for testing. The optimized high-strength and high-performance concrete has higher strength and a slump of 216.4mm

    Towards an Architecture for Semiautonomous Robot Telecontrol Systems.

    Get PDF
    The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Assessment of Ore Grade Estimation Methods for Structurally Controlled Vein Deposits - A Review

    Get PDF
    Resource estimation techniques have upgraded over the past couple of years, thereby improving resource estimates. The classical method of estimation is less used in ore grade estimation than geostatistics (kriging) which proved to provide more accurate estimates by its ability to account for the geology of the deposit and assess error. Geostatistics has therefore been said to be superior over the classical methods of estimation. However, due to the complexity of using geostatistics in resource estimation, its time-consuming nature, the susceptibility to errors due to human interference, the difficulty in applying it to deposits with few data points and the difficulty in using it to estimate complicated deposits paved the way for the application of Artificial Intelligence (AI) techniques to be applied in ore grade estimation. AI techniques have been employed in diverse ore deposit types for the past two decades and have proven to provide comparable or better results than those estimated with kriging. This research aimed to review and compare the most commonly used kriging methods and AI techniques in ore grade estimation of complex structurally controlled vein deposits. The review showed that AI techniques outperformed kriging methods in ore grade estimation of vein deposits.   Keywords: Artificial Intelligence, Neural Networks, Geostatistics, Kriging, Mineral Resource, Grad

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Ancient and historical systems

    Get PDF
    corecore