27,319 research outputs found

    Support of the collaborative inquiry learning process: influence of support on task and team regulation

    Get PDF
    Regulation of the learning process is an important condition for efficient and effective learning. In collaborative learning, students have to regulate their collaborative activities (team regulation) next to the regulation of their own learning process focused on the task at hand (task regulation). In this study, we investigate how support of collaborative inquiry learning can influence the use of regulative activities of students. Furthermore, we explore the possible relations between task regulation, team regulation and learning results. This study involves tenth-grade students who worked in pairs in a collaborative inquiry learning environment that was based on a computer simulation, Collisions, developed in the program SimQuest. Students of the same team worked on two different computers and communicated through chat. Chat logs of students from three different conditions are compared. Students in the first condition did not receive any support at all (Control condition). In the second condition, students received an instruction in effective communication, the RIDE rules (RIDE condition). In the third condition, students were, in addition to receiving the RIDE rules instruction, supported by the Collaborative Hypothesis Tool (CHT), which helped the students with formulating hypotheses together (CHT condition). The results show that students overall used more team regulation than task regulation. In the RIDE condition and the CHT condition, students regulated their team activities most often. Moreover, in the CHT condition the regulation of team activities was positively related to the learning results. We can conclude that different measures of support can enhance the use of team regulative activities, which in turn can lead to better learning results

    The Science Studio – A Workshop Approach to Introductory Physical Science

    Get PDF
    This paper describes the Science Studio, an innovative workshop approach for instruction in a physical science course that combines aspects of traditional lecture and laboratory. The target audience for this introductory course is non-science majors, including prospective teachers. An inquiry-based, technology-rich learning environment has been created to allow students hands-on, in-depth exploration of topics in physics, and earth and space science. Course philosophy, course development, and sample activities are described in this paper, along with outcomes from a project-wide evaluation of the Virginia Collaborative for Excellence in the Preparation of Teachers (VCEPT), an investigation of change in student attitudes and the lasting impact of the studio model at Norfolk State University

    Sensing and mapping for interactive performance

    Get PDF
    This paper describes a trans-domain mapping (TDM) framework for translating meaningful activities from one creative domain onto another. The multi-disciplinary framework is designed to facilitate an intuitive and non-intrusive interactive multimedia performance interface that offers the users or performers real-time control of multimedia events using their physical movements. It is intended to be a highly dynamic real-time performance tool, sensing and tracking activities and changes, in order to provide interactive multimedia performances. From a straightforward definition of the TDM framework, this paper reports several implementations and multi-disciplinary collaborative projects using the proposed framework, including a motion and colour-sensitive system, a sensor-based system for triggering musical events, and a distributed multimedia server for audio mapping of a real-time face tracker, and discusses different aspects of mapping strategies in their context. Plausible future directions, developments and exploration with the proposed framework, including stage augmenta tion, virtual and augmented reality, which involve sensing and mapping of physical and non-physical changes onto multimedia control events, are discussed

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Learning recursively: integrating PBL as an authentic problem experience [Plenary presentation]

    Get PDF
    [Abstract]: Problem based learning (PBL) is widely recognised as a desirable approach to education of future professionals. One strong basis for its appeal is the use of authentic problems of practice, which make the relevance of what is being learned apparent to the learners and encourage development of attitudes and skills that will be central to continuing professional growth beyond graduation. However, the change from traditional lecture-based courses to PBL presents challenges to educators and the institutions in which they work. In many respects, the implementation of PBL can be itself an experience in PBL for the educator. This presentation will address some of the challenges associated with integrating PBL in a university setting from the perspective of those who design and teach courses using PBL, which will be understood as a spectrum of practices rather than a single approach that must be replicated in every instance

    The Function of Gesture in an Architectural Design Meeting

    Full text link
    This text presents a cognitive-psychology analysis of spontaneous, co-speech gestures in a face-to-face architectural design meeting (A1 in DTRS7). The long-term objective is to formulate specifications for remote collaborative-design systems, especially for supporting the use of different semiotic modalities (multi-modal interaction). According to their function for design, interaction, and collaboration, we distinguish different gesture families: representational (entity designating or specifying), organisational (management of discourse, interaction, or functional design actions), focalising, discourse and interaction modulating, and disambiguating gestures. Discussion and conclusion concern the following points. It is impossible to attribute fixed functions to particular gesture forms. "Designating" gestures may also have a design function. The gestures identified in A1 possess a certain generic character. The gestures identified are neither systematically irreplaceable, nor optional accessories to speech or drawing. We discuss the possibilities for gesture in computer-supported collaborative software systems. The paper closes on our contribution to gesture studies and cognitive design research
    corecore