290 research outputs found

    Elastic image registration using parametric deformation models

    Get PDF
    The main topic of this thesis is elastic image registration for biomedical applications. We start with an overview and classification of existing registration techniques. We revisit the landmark interpolation which appears in the landmark-based registration techniques and add some generalizations. We develop a general elastic image registration algorithm. It uses a grid of uniform B-splines to describe the deformation. It also uses B-splines for image interpolation. Multiresolution in both image and deformation model spaces yields robustness and speed. First we describe a version of this algorithm targeted at finding unidirectional deformation in EPI magnetic resonance images. Then we present the enhanced and generalized version of this algorithm which is significantly faster and capable of treating multidimensional deformations. We apply this algorithm to the registration of SPECT data and to the motion estimation in ultrasound image sequences. A semi-automatic version of the registration algorithm is capable of accepting expert hints in the form of soft landmark constraints. Much fewer landmarks are needed and the results are far superior compared to pure landmark registration. In the second part of this thesis, we deal with the problem of generalized sampling and variational reconstruction. We explain how to reconstruct an object starting from several measurements using arbitrary linear operators. This comprises the case of traditional as well as generalized sampling. Among all possible reconstructions, we choose the one minimizing an a priori given quadratic variational criterion. We give an overview of the method and present several examples of applications. We also provide the mathematical details of the theory and discuss the choice of the variational criterion to be used

    A partition of unity boundary element method for transient wave propagation

    Get PDF

    A partition of unity boundary element method for transient wave propagation

    Get PDF

    An immittance spectroscopy study of cementitious materials during early hydration

    Get PDF

    Identifying Structure Transitions Using Machine Learning Methods

    Get PDF
    Methodologies from data science and machine learning, both new and old, provide an exciting opportunity to investigate physical systems using extremely expressive statistical modeling techniques. Physical transitions are of particular interest, as they are accompanied by pattern changes in the configurations of the systems. Detecting and characterizing pattern changes in data happens to be a particular strength of statistical modeling in data science, especially with the highly expressive and flexible neural network models that have become increasingly computationally accessible in recent years through performance improvements in both hardware and algorithmic implementations. Conceptually, the machine learning approach can be regarded as one that employing algorithms that eschew explicit instructions in favor of strategies based around pattern extraction and inference driven by statistical analysis and large complex data sets. This allows for the investigation of physical systems using only raw configurational information to make inferences instead of relying on physical information obtained from a priori knowledge of the system. This work focuses on the extraction of useful compressed representations of physical configurations from systems of interest to automate phase classification tasks in addition to the identification of critical points and crossover regions
    • …
    corecore