3,215 research outputs found

    The National Council on Crime and Delinquency's Evaluation of the Project Development of National Institute of Corrections/Child Welfare League of America's Planning and Intervention Sites Funded to Address the Needs of Children of Incarcerated Parents

    Get PDF
    The National Council on Crime and Delinquency (NCCD) was contracted by the Child Welfare League of America (CWLA) to conduct a process and outcome evaluation of program development for demonstration sites funded by the National Institute of Corrections (NIC). The grantees were to develop projects that would address the needs of children of incarcerated parents. There were ten demonstration sites, four of which received 18 month planning grants, and six of which received three year grants toimplement their intervention programs. The goal of the evaluation was to gain a better understanding of the processes involved in developing and implementing programs that address the needs of children of incarcerated parents

    Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network

    Full text link
    In wireless mesh networks such as WLAN (IEEE 802.11s) or WMAN (IEEE 802.11), each node should help to relay packets of neighboring nodes toward gateway using multi-hop routing mechanisms. Wireless mesh networks usually intensively deploy mesh nodes to deal with the problem of dead spot communication. However, the higher density of nodes deployed, the higher radio interference occurred. This causes significant degradation of system performance. In this paper, we first convert network problems into geometry problems in graph theory, and then solve the interference problem by geometric algorithms. We first define line intersection in a graph to reflect radio interference problem in a wireless mesh network. We then use plan sweep algorithm to find intersection lines, if any; employ Voronoi diagram algorithm to delimit the regions among nodes; use Delaunay Triangulation algorithm to reconstruct the graph in order to minimize the interference among nodes. Finally, we use standard deviation to prune off those longer links (higher interference links) to have a further enhancement. The proposed hybrid solution is proved to be able to significantly reduce interference in a wireless mesh network in O(n log n) time complexity.Comment: 24 Pages, JGraph-Hoc Journal 201

    Performance of Bursty World Wide Web (WWW) Sources over ABR

    Full text link
    We model World Wide Web (WWW) servers and clients running over an ATM network using the ABR (available bit rate) service. The WWW servers are modeled using a variant of the SPECweb96 benchmark, while the WWW clients are based on a model by Mah. The traffic generated by this application is typically bursty, i.e., it has active and idle periods in transmission. A timeout occurs after given amount of idle period. During idle period the underlying TCP congestion windows remain open until a timeout expires. These open windows may be used to send data in a burst when the application becomes active again. This raises the possibility of large switch queues if the source rates are not controlled by ABR. We study this problem and show that ABR scales well with a large number of bursty TCP sources in the system.Comment: Submitted to WebNet `97, Toronto, November 9

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table
    • …
    corecore