145,554 research outputs found
UbiComp in Opportunity Spaces: Challenges for Participatory Design
The rise of ubiquitous computing (UbiComp), where pervasive, wireless and disappearing technologies offer hitherto unavailable means of supporting activity, increasingly opens up ‘opportunity spaces’. These are spaces where there is no urgent problem to be solved, but much potential to augment and enhance practice in new ways. Based on our experience of co-designing novel user experiences for visitors to an English country estate, we discuss challenges for PD in such an opportunity space. Key amongst these are how to build a working relationship of value when there are no urgent requirements; how to understand and scope the space of opportunities; and how to leave users with new resources of value to them
Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G
By caching content at network edges close to the users, the content-centric
networking (CCN) has been considered to enforce efficient content retrieval and
distribution in the fifth generation (5G) networks. Due to the volume,
velocity, and variety of data generated by various 5G users, an urgent and
strategic issue is how to elevate the cognitive ability of the CCN to realize
context-awareness, timely response, and traffic offloading for 5G applications.
In this article, we envision that the fundamental work of designing a cognitive
CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to
associatively learn and control the states of edge devices (such as phones,
vehicles, and base stations) and in-network resources (computing, networking,
and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework
for C-CCN in 5G, which can aggregate the idle computing resources of the
neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive
learning tasks. By leveraging artificial intelligence (AI) to jointly
processing sensed environmental data, dealing with the massive content
statistics, and enforcing the mobility control at network edges, the FEL makes
it possible for mobile users to cognitively share their data over the C-CCN in
5G. To validate the feasibility of proposed framework, we design two
FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network
acceleration, 2) enhanced mobility management. Simultaneously, we present the
simulations to show the FEL's efficiency on serving for the mobile users'
delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201
Integrating Sensor-Network Research and Development into a Software Engineering Curriculum
The emergence of a sensor-networked world produces a clear and urgent need for well-planned, safe and secure software engineering. It is the role of universities to prepare graduates with the knowledge and experience to enter the work-force with a clear understanding of software design and its application to the future safety of computing. The snBench (Sensor Network WorkBench) project aims to provide support to the programming and deployment of Sensor Network Applications, enabling shared sensor embedded spaces to be easily tasked with various sensory applications by different users for simultaneous execution. In this report we discus our experience using the snBench research project as the foundation for semester-long project in a graduate level software engineering class at Boston University (CS511)
Increasing Compression Ratio of Low Complexity Compressive Sensing Video Encoder with Application-Aware Configurable Mechanism
With the development of embedded video acquisition nodes and wireless video
surveillance systems, traditional video coding methods could not meet the needs
of less computing complexity any more, as well as the urgent power consumption.
So, a low-complexity compressive sensing video encoder framework with
application-aware configurable mechanism is proposed in this paper, where novel
encoding methods are exploited based on the practical purposes of the real
applications to reduce the coding complexity effectively and improve the
compression ratio (CR). Moreover, the group of processing (GOP) size and the
measurement matrix size can be configured on the encoder side according to the
post-analysis requirements of an application example of object tracking to
increase the CR of encoder as best as possible. Simulations show the proposed
framework of encoder could achieve 60X of CR when the tracking successful rate
(SR) is still keeping above 90%.Comment: 5 pages with 6figures and 1 table,conferenc
- …
