145,554 research outputs found

    UbiComp in Opportunity Spaces: Challenges for Participatory Design

    No full text
    The rise of ubiquitous computing (UbiComp), where pervasive, wireless and disappearing technologies offer hitherto unavailable means of supporting activity, increasingly opens up ‘opportunity spaces’. These are spaces where there is no urgent problem to be solved, but much potential to augment and enhance practice in new ways. Based on our experience of co-designing novel user experiences for visitors to an English country estate, we discuss challenges for PD in such an opportunity space. Key amongst these are how to build a working relationship of value when there are no urgent requirements; how to understand and scope the space of opportunities; and how to leave users with new resources of value to them

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Integrating Sensor-Network Research and Development into a Software Engineering Curriculum

    Full text link
    The emergence of a sensor-networked world produces a clear and urgent need for well-planned, safe and secure software engineering. It is the role of universities to prepare graduates with the knowledge and experience to enter the work-force with a clear understanding of software design and its application to the future safety of computing. The snBench (Sensor Network WorkBench) project aims to provide support to the programming and deployment of Sensor Network Applications, enabling shared sensor embedded spaces to be easily tasked with various sensory applications by different users for simultaneous execution. In this report we discus our experience using the snBench research project as the foundation for semester-long project in a graduate level software engineering class at Boston University (CS511)

    Increasing Compression Ratio of Low Complexity Compressive Sensing Video Encoder with Application-Aware Configurable Mechanism

    Full text link
    With the development of embedded video acquisition nodes and wireless video surveillance systems, traditional video coding methods could not meet the needs of less computing complexity any more, as well as the urgent power consumption. So, a low-complexity compressive sensing video encoder framework with application-aware configurable mechanism is proposed in this paper, where novel encoding methods are exploited based on the practical purposes of the real applications to reduce the coding complexity effectively and improve the compression ratio (CR). Moreover, the group of processing (GOP) size and the measurement matrix size can be configured on the encoder side according to the post-analysis requirements of an application example of object tracking to increase the CR of encoder as best as possible. Simulations show the proposed framework of encoder could achieve 60X of CR when the tracking successful rate (SR) is still keeping above 90%.Comment: 5 pages with 6figures and 1 table,conferenc
    corecore