25,150 research outputs found

    Self-organized crowd dynamics : research on earthquake emergency response patterns of drill-trained individuals based on GIS and multi-agent systems methodology

    Get PDF
    Predicting evacuation patterns is useful in emergency management situations such as an earthquake. To find out how pre-trained individuals interact with one another to achieve their own goal to reach the exit as fast as possible firstly, we investigated urban people’s evacuation behavior under earthquake disaster conditions, established crowd response rules in emergencies, and described the drill strategy and exit familiarity quantitatively through a cellular automata model. By setting different exit familiarity ratios, simulation experiments under different strategies were conducted to predict people’s reactions before an emergency. The corresponding simulation results indicated that the evacuees’ training level could affect a multi-exit zone’s evacuation pattern and clearance time. Their exit choice preferences may disrupt the exit options’ balance, leading to congestion in some of the exits. Secondly, due to people’s rejection of long distances, congestion, and unfamiliar exits, some people would hesitant about the evacuation direction during the evacuation process. This hesitation would also significantly reduce the overall evacuation efficiency. Finally, taking a community in Zhuhai City, China, as an example, put forward the best urban evacuation drill strategy. The quantitative relation between exit familiar level and evacuation efficiency was obtained. The final results showed that the optimized evacuation plan could improve evacuation’s overall efficiency through the self-organization effect. These studies may have some impact on predicting crowd behavior during evacuation and designing the evacuation plan

    Design of evacuation plans for densely urbanised city centres

    Get PDF
    The high population density and tightly packed nature of some city centres make emergency planning for these urban spaces especially important, given the potential for human loss in case of disaster. Historic and recent events have made emergency service planners particularly conscious of the need for preparing evacuation plans in advance. This paper discusses a methodological approach for assisting decision-makers in designing urban evacuation plans. The approach aims at quickly and safely moving the population away from the danger zone into shelters. The plans include determining the number and location of rescue facilities, as well as the paths that people should take from their building to their assigned shelter in case of an occurrence requiring evacuation. The approach is thus of the location–allocation–routing type, through the existing streets network, and takes into account the trade-offs among different aspects of evacuation actions that inevitably come up during the planning stage. All the steps of the procedure are discussed and systematised, along with computational and practical implementation issues, in the context of a case study – the design of evacuation plans for the historical centre of an old European city

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Scientific knowledge and scientific uncertainty in bushfire and flood risk mitigation: literature review

    Get PDF
    EXECUTIVE SUMMARY The Scientific Diversity, Scientific Uncertainty and Risk Mitigation Policy and Planning (RMPP) project aims to investigate the diversity and uncertainty of bushfire and flood science, and its contribution to risk mitigation policy and planning. The project investigates how policy makers, practitioners, courts, inquiries and the community differentiate, understand and use scientific knowledge in relation to bushfire and flood risk. It uses qualitative social science methods and case studies to analyse how diverse types of knowledge are ordered and judged as salient, credible and authoritative, and the pragmatic meaning this holds for emergency management across the PPRR spectrum. This research report is the second literature review of the RMPP project and was written before any of the case studies had been completed. It synthesises approximately 250 academic sources on bushfire and flood risk science, including research on hazard modelling, prescribed burning, hydrological engineering, development planning, meteorology, climatology and evacuation planning. The report also incorporates theoretical insights from the fields of risk studies and science and technology studies (STS), as well as indicative research regarding the public understandings of science, risk communication and deliberative planning. This report outlines the key scientific practices (methods and knowledge) and scientific uncertainties in bushfire and flood risk mitigation in Australia. Scientific uncertainties are those ‘known unknowns’ and ‘unknown unknowns’ that emerge from the development and utilisation of scientific knowledge. Risk mitigation involves those processes through which agencies attempt to limit the vulnerability of assets and values to a given hazard. The focus of this report is the uncertainties encountered and managed by risk mitigation professionals in regards to these two hazards, though literature regarding natural sciences and the scientific method more generally are also included where appropriate. It is important to note that while this report excludes professional experience and local knowledge from its consideration of uncertainties and knowledge, these are also very important aspects of risk mitigation which will be addressed in the RMPP project’s case studies. Key findings of this report include: Risk and scientific knowledge are both constructed categories, indicating that attempts to understand any individual instance of risk or scientific knowledge should be understood in light of the social, political, economic, and ecological context in which they emerge. Uncertainty is a necessary element of scientific methods, and as such risk mitigation practitioners and researchers alike should seek to ‘embrace uncertainty’ (Moore et al., 2005) as part of navigating bushfire and flood risk mitigation

    A Framework for Developing and Integrating Effective Routing Strategies Within the Emergency Management Decision-Support System, Research Report 11-12

    Get PDF
    This report describes the modeling, calibration, and validation of a VISSIM traffic-flow simulation of the San José, California, downtown network and examines various evacuation scenarios and first-responder routings to assess strategies that would be effective in the event of a no-notice disaster. The modeled network required a large amount of data on network geometry, signal timings, signal coordination schemes, and turning-movement volumes. Turning-movement counts at intersections were used to validate the network with the empirical formula-based measure known as the GEH statistic. Once the base network was tested and validated, various scenarios were modeled to estimate evacuation and emergency vehicle arrival times. Based on these scenarios, a variety of emergency plans for San José’s downtown traffic circulation were tested and validated. The model could be used to evaluate scenarios in other communities by entering their community-specific data

    Strategies to harmonize urbanization and flood risk management in deltas

    Get PDF
    In many countries, important economic centres and major cities are located in a flood-prone area at the confluence of a large river and the sea. The expansion of these cities increases the risk of major flood disasters, a risk that is further increased if the predicted effects of climate change come true. Recent thinking about flood prevention stresses the importance of restricting city expansions into flood-prone areas, flood-proofing cities and accomodating floods by reserving space for water. These ideas require innovative city design, cooperation between city planners and water managers, and a policy that connects various levels of government with business and the public. The choice of strategy may be culture-specific, but will in any case involve large investments, and have long-term and large-scale consequences. Thus, it is worthwhile to exchange experiences between delta's that are tackling this problem. In the paper we will compare the approaches in a number of "typical" urbanized flood-prone delta's: New Orleans in the Mississippi delta, the Randstad in the Rhine delta, Venice in the Po delta, Wuhan along the Yangtze, Yokohama along the Tsurumi, Dhaka in the Ganges-Brahmaputra delta and London along the Thames.

    Policy into practice: Adoption of hazard mitigation measures by local government in Queensland:A collaborative research project between Queensland University of Technology and Emergency Management Queensland in association with Local Government of Queensland Disaster Management Alliance

    Get PDF
    The focus of the present research was to investigate how Local Governments in Queensland were progressing with the adoption of delineated DM policies and supporting guidelines. The study consulted Local Government representatives and hence, the results reflect their views on these issues. Is adoption occurring? To what degree? Are policies and guidelines being effectively implemented so that the objective of a safer, more resilient community is being achieved? If not, what are the current barriers to achieving this, and can recommendations be made to overcome these barriers? These questions defined the basis on which the present study was designed and the survey tools developed.\ud \ud While it was recognised that LGAQ and Emergency Management Queensland (EMQ) may have differing views on some reported issues, it was beyond the scope of the present study to canvass those views.\ud \ud The study resolved to document and analyse these questions under the broad themes of: \ud \ud • Building community capacity (notably via community awareness).\ud • Council operationalisation of DM. \ud • Regional partnerships (in mitigation/adaptation).\ud \ud Data was collected via a survey tool comprising two components: \ud \ud • An online questionnaire survey distributed via the LGAQ Disaster Management Alliance (hereafter referred to as the “Alliance”) to DM sections of all Queensland Local Government Councils; and\ud • a series of focus groups with selected Queensland Councils\u
    corecore