88,700 research outputs found
Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site
Forests around Manaus have staged the oldest and the longest forest-atmosphere CO2 exchange studies made anywhere in the Amazon. Since July 1999 the exchange of CO2, water, and energy, as well as weather variables, have been measured almost continuously over two forests, 11 km apart, in the Cuieiras reserve near Manaus, Brazil. This paper presents the sites and climatology of the region based upon the new data sets. The landscape consists of plateaus dissected by often waterlogged valleys, and the two sites differ in terms of the relative areas of those two landscape components represented in the tower footprints. The radiation and wind climate was similar to both towers. Generally, both the long-wave and short-wave radiation input was less in the wet than in the dry season. The energy balance closure was imperfect (on average 80%) in both towers, with little variation in energy partitioning between the wet and dry seasons; likely a result of anomalously high rainfall in the 1999 dry season. Fluxes of CO2 also showed little seasonal variation except for a slightly shorter daytime uptake duration and somewhat lower respiratory fluxes in the dry season. The net effect is one of lower daily net ecosystem exchange (NEE) in the dry season. The tower, which has less waterlogged valley areas in its footprint, measured a higher overall CO2 uptake rate. We found that on first sight, NEE is underestimated during calm nights, as was observed in many other tower sites before. However, a closer inspection of the diurnal variation of CO2 storage fluxes and NEE suggests that at least part of the nighttime deficits is recovered from either lateral influx of CO2 from valleys or outgassing of soil storage. Therefore there is a high uncertainty in the magnitude of nocturnal NEE, and consequently preliminary estimates of annual carbon uptake reflecting this range from 1 to 8 T ha-1 y-1, with an even higher upper range for the less waterlogged area. The high uptake rates are clearly unsustainable and call for further investigations into the integral carbon balance of Amazon landscapes
Scintigraphic assessment of bone status at one year following hip resurfacing : comparison of two surgical approaches using SPECT-CT scan
Objectives: To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches.
Methods: In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach.
Results: One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy.
Conclusions: Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery
Ecological indicators for abandoned mines, Phase 1: Review of the literature
Mine waters have been identified as a significant issue in the majority of Environment Agency draft River Basin Management Plans. They are one of the largest drivers for chemical pollution in the draft Impact Assessment for the Water Framework Directive (WFD), with significant failures of environmental quality standards (EQS) for metals (particularly Cd, Pb, Zn, Cu, Fe) in many rivers linked to abandoned mines. Existing EQS may be overprotective of aquatic life which may have adapted over centuries of exposure. This study forms part of a larger project to investigate the ecological impact of metals in rivers, to develop water quality targets (alternative objectives for the WFD) for aquatic ecosystems impacted by long-term mining pollution. The report reviews literature on EQS failures, metal effects on aquatic biota and effects of water chemistry, and uses this information to consider further work.
A preliminary assessment of water quality and biology data for 87 sites across Gwynedd and Ceredigion (Wales) shows that existing Environment Agency water quality and biology data could be used to establish statistical relations between chemical variables and metrics of ecological quality. Visual representation and preliminary statistical analyses show that invertebrate diversity declines with increasing zinc concentration. However, the situation is more complex because the effects of other metals are not readily apparent. Furthermore, pH and aluminium also affect streamwater invertebrates, making it difficult to tease out toxicity due to individual mine-derived metals.
The most characteristic feature of the plant communities of metal-impacted systems is a reduction in diversity, compared to that found in comparable unimpacted streams. Some species thrive in the presence of heavy metals, presumably because they are able to develop metal tolerance, whilst others consistently disappear. Effects are, however, confounded by water chemistry, particularly pH. Tolerant species are spread across a number of divisions of photosynthetic organisms, though green algae, diatoms and blue-green algae are usually most abundant, often thriving in the absence of competition and/or grazing. Current UK monitoring techniques focus on community composition and, whilst these provide a sampling and analytical framework for studies of metal impacts, the metrics are not sensitive to these impacts. There is scope for developing new metrics, based on community-level analyses and for looking at morphological variations common in some taxa at elevated metal concentrations. On the whole, community-based metrics are recommended, as these are easier to relate to ecological status definitions.
With respect to invertebrates and fish, metals affect individuals, population and communities but sensitivity varies among species, life stages, sexes, trophic groups and with body condition. Acclimation or adaptation may cause varying sensitivity even within species. Ecosystem-scale effects, for example on ecological function, are poorly understood. Effects vary between metals such as cadmium, copper, lead, chromium, zinc and nickel in order of decreasing toxicity. Aluminium is important in acidified headwaters. Biological effects depend on speciation, toxicity, availability, mixtures, complexation and exposure conditions, for example discharge (flow). Current water quality monitoring is unlikely to detect short-term episodic increases in metal concentrations or evaluate the bioavailability of elevated metal concentrations in sediments. These factors create uncertainty in detecting ecological impairment in metal-impacted ecosystems. Moreover, most widely used biological indicators for UK freshwaters were developed for other pressures and none distinguishes metal impacts from other causes of impairment. Key ecological needs for better regulation and management of metals in rivers include: i) models relating metal data to ecological data that better represent influences on metal toxicity; ii) biodiagnostic indices to reflect metal effects; iii) better methods to identify metal acclimation or adaptation among sensitive taxa; iv) better investigative procedures to isolate metal effects from other pressures.
Laboratory data on the effects of water chemistry on cationic metal toxicity and bioaccumulation show that a number of chemical parameters, particularly pH, dissolved organic carbon (DOC) and major cations (Na, Mg, K, Ca) exert a major influence on the toxicity and/or bioaccumulation of cationic metals. The biotic ligand model (BLM) provides a conceptual framework for understanding these water chemistry effects as a combination of the influence of chemical speciation, and metal uptake by organisms in competition with H+ and other cations. In some cases where the BLM cannot describe effects, empirical bioavailable models have been successfully used. Laboratory data on the effects of metal mixtures across different water chemistries are sparse, with implications for transferring understanding to mining-impacted sites in the field where mixture effects are likely.
The available field data, although relatively sparse, indicate that water chemistry influences metal effects on aquatic ecosystems. This occurs through complexation reactions, notably involving dissolved organic matter and metals such as Al, Cu and Pb. Secondly, because bioaccumulation and toxicity are partly governed by complexation reactions, competition effects among metals, and between metals and H+, give rise to dependences upon water chemistry. There is evidence that combinations of metals are active in the field; the main study conducted so far demonstrated the combined effects of Al and Zn, and suggested, less certainly, that Cu and H+ can also contribute. Chemical speciation is essential to interpret and predict observed effects in the field. Speciation results need to be combined with a model that relates free ion concentrations to toxic effect. Understanding the toxic effects of heavy metals derived from abandoned mines requires the simultaneous consideration of the acidity-related components Al and H+.
There are a number of reasons why organisms in waters affected by abandoned mines may experience different levels of metal toxicity than in the laboratory. This could lead to discrepancies between actual field behaviour and that predicted by EQS derived from laboratory experiments, as would be applied within the WFD. The main factors to consider are adaptation/acclimation, water chemistry, and the effects of combinations of metals. Secondary effects are metals in food, metals supplied by sediments, and variability in stream flows. Two of the most prominent factors, namely adaptation/ acclimation and bioavailability, could justify changes in EQS or the adoption of an alternative measure of toxic effects in the field. Given that abandoned mines are widespread in England and Wales, and the high cost of their remediation to meet proposed WFD EQS criteria, further research into the question is clearly justified.
Although ecological communities of mine-affected streamwaters might be over-protected by proposed WFD EQS, there are some conditions under which metals emanating from abandoned mines definitely exert toxic effects on biota. The main issue is therefore the reliable identification of chemical conditions that are unacceptable and comparison of those conditions with those predicted by WFD EQS. If significant differences can convincingly be demonstrated, the argument could be made for alternative standards for waters affected by abandoned mines. Therefore in our view, the immediate research priority is to improve the quantification of metal effects under field circumstances. Demonstration of dose-response relationships, based on metal mixtures and their chemical speciation, and the use of better biological tools to detect and diagnose community-level impairment, would provide the necessary scientific information
“Me Too”: Epistemic Injustice and the Struggle for Recognition
Congdon (2017), Giladi (2018), and McConkey (2004) challenge feminist epistemologists and recognition theorists to come together to analyze epistemic injustice. I take up this challenge by highlighting the failure of recognition in cases of testimonial and hermeneutical injustice experienced by victims of sexual harassment and sexual assault. I offer the #MeToo movement as a case study to demonstrate how the process of mutual recognition makes visible and helps overcome the epistemic injustice suffered by victims of sexual harassment and sexual assault. I argue that in declaring “me too,” the epistemic subject emerges in the context of a polyphonic symphony of victims claiming their status as agents who are able to make sense of their own social experiences and able to convey their knowledge to others
The Failures of Genetically Modified Organisms (GMOs): Resistance, Regulation, and Rejection
Genetically modified organisms (GMOs) have been contentious for more than three decades. Only 24 countries grow GMOs commercially. Four countries (USA, Canada, Brazil and Argentina) account for 85% of the global GMO hectares. Four crops (soy, corn, cotton and canola) account for 99% of GM hectares. Despite the veneer of social validity that regulators cast, the GMO sector has failed to gain a social licence. Where GM labelling is required, food manufacturers avoid GM ingredients. GMOs have failed to gain price parity with their non-GM counterparts, and they attract price penalties. Segregation of GMOs and non-GMOs has failed (with a tolerance of 0.9% GM contamination in so-called non-GM canola). GM has failed the coexistence test with a GMO growers contaminating neighbouring farms. GMOs are a biosecurity fail, with test plots of GM canola planted in the late 1990s still monitored two decades later for rogue canola plants. Most GMO crops are glyphosate dependent. Glyphosate is globally subject to massive litigation claims and awards, and is implicated in the causation of multiple cancers. Mechanisms for compensating farms contaminated by GMOs are lacking. The GMO industry has taken no responsibility for contaminations. GMOs are a threat to the organic sector and the maintenance of certification and price premiums. Most countries (88%) do not grow GMO crops. This paper considers the global experience of GMOs and the Australian experience as a microcosm of the global experience and as a case study
Barriers to cervical screening participation in high-risk women
Aim
Women aged 25–35 years, for whom cervical cancer is most problematic, are least likely to participate in the cervical screening programme. Therefore, identifying barriers to screening participation in this high-risk group is essential.
Subject and methods
A sample of 430 women completed an electronic survey of their cervical screening history and answered questions on sociodemographic, behavioural, attitudinal and informational barriers to cervical screening uptake. Logistic regression was used to predict cervical screening non attendance.
Results
Women with more than 10 sexual partners in their lifetime were more likely, but women from ethnic minorities, less likely to participate in the cervical screening programme. Women unaware of the recommended screening interval were also less likely to be screened, as were women who believed that screening is a test for cancer. Screening was also less likely among women who endorsed the belief that screening in the absence of symptoms is unnecessary.
Conclusion
These data highlight poor knowledge of the recommended screening interval and purpose of cervical cancer screening in this high-risk group. As such, interventions that target these informational barriers might be most effective for increasing cervical screening uptake in this high-risk group
Longer growing seasons do not increase net carbon uptake in Northeastern Siberian tundra
With global warming, snowmelt is occurring earlier and growing seasons are becoming longer around the Arctic. It has been suggested that this would lead to more uptake of carbon due to a lengthening of the period in which plants photosynthesize. To investigate this suggestion, 8 consecutive years of eddy covariance measurements at a northeastern Siberian graminoid tundra site were investigated for patterns in net ecosystem exchange, gross primary production (GPP) and ecosystem respiration (Reco). While GPP showed no clear increase with longer growing seasons, it was significantly increased in warmer summers. Due to these warmer temperatures however, the increase in uptake was mostly offset by an increase in Reco. Therefore, overall variability in net carbon uptake was low, and no relationship with growing season length was found. Furthermore, the highest net uptake of carbon occurred with the shortest and the coldest growing season. Low uptake of carbon mostly occurred with longer or warmer growing seasons. We thus conclude that the net carbon uptake of this ecosystem is more likely to decrease rather than to increase under a warmer climate. These results contradict previous research that has showed more net carbon uptake with longer growing seasons. We hypothesize that this difference is due to site-specific differences, such as climate type and soil, and that changes in the carbon cycle with longer growing seasons will not be uniform around the Arcti
Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis
We unravel how functional plasticity and redundancy are essential mechanisms
underlying the ability to survive of metabolic networks. We perform an
exhaustive computational screening of synthetic lethal reaction pairs in
Escherichia coli in a minimal medium and we find that synthetic lethal pairs
divide in two different groups depending on whether the synthetic lethal
interaction works as a backup or as a parallel use mechanism, the first
corresponding to essential plasticity and the second to essential redundancy.
In E. coli, the analysis of pathways entanglement through essential redundancy
supports the view that synthetic lethality affects preferentially a single
function or pathway. In contrast, essential plasticity, the dominant class,
tends to be inter-pathway but strongly localized and unveils Cell Envelope
Biosynthesis as an essential backup for Membrane Lipid Metabolism. When
comparing E. coli and Mycoplasma pneumoniae, we find that the metabolic
networks of the two organisms exhibit a large difference in the relative
importance of plasticity and redundancy which is consistent with the conjecture
that plasticity is a sophisticated mechanism that requires a complex
organization. Finally, coessential reaction pairs are explored in different
environmental conditions to uncover the interplay between the two mechanisms.
We find that synthetic lethal interactions and their classification in
plasticity and redundancy are basically insensitive to medium composition, and
are highly conserved even when the environment is enriched with nonessential
compounds or overconstrained to decrease maximum biomass formation.Comment: 22 pages, 4 figure
Large Scale In Silico Screening on Grid Infrastructures
Large-scale grid infrastructures for in silico drug discovery open
opportunities of particular interest to neglected and emerging diseases. In
2005 and 2006, we have been able to deploy large scale in silico docking within
the framework of the WISDOM initiative against Malaria and Avian Flu requiring
about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These
achievements demonstrated the relevance of large-scale grid infrastructures for
the virtual screening by molecular docking. This also allowed evaluating the
performances of the grid infrastructures and to identify specific issues raised
by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science
Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in
the proceeding
An exploratory survey of current practice in the medical device industry
This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.Purpose – This study seeks to examine the extent to which mainstream tools and strategies are applied in the medical devices sector, which is highly fragmented and contains a high percentage of small companies, and to determine if company size impacts on manufacturing strategy selection.
Design/methodology/approach – A questionnaire was developed and disseminated through a number of channels. Responses were received from 38 companies in the UK and Ireland, describing 68 products taken to market in the past five years.
Findings – Because of the limited scope of the survey, the findings are indicative rather than conclusive, and interesting trends have emerged. New to the world products were much more likely to exceed company expectations of market success compared to derivative products. It was found that the majority of these innovative products were developed by small companies. Large companies appear to favour minor upgrades over major upgrades even though these prove – on the data presented – to be less successful overall.
Practical implications – These results provide those engaged in this sector with comparative information and some insights for further improvement. The reported trends with respect to company size and product complexity (or degree of novelty) are particularly illuminating. Academically, this sets some expected trends on a firmer footing and unearths one or two unexpected findings.
Originality/value – It is believed that this is the largest survey of determinants of success in UK medical device companies and it provides a comparison with other sectors
- …
