36 research outputs found

    On Coset Leader Graphs of LDPC Codes

    Full text link
    Our main technical result is that, in the coset leader graph of a linear binary code of block length n, the metric balls spanned by constant-weight vectors grow exponentially slower than those in {0,1}n\{0,1\}^n. Following the approach of Friedman and Tillich (2006), we use this fact to improve on the first linear programming bound on the rate of LDPC codes, as the function of their minimal distance. This improvement, combined with the techniques of Ben-Haim and Lytsin (2006), improves the rate vs distance bounds for LDPC codes in a significant sub-range of relative distances

    An Upper Bound on the Minimum Distance of LDPC Codes over GF(q)

    Full text link
    In [1] a syndrome counting based upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over GF(q). The comparison to the lower bound for LDPC codes over GF(q) and to the upper bound for non-binary codes is done. The new bound is shown to lie under the Gilbert-Varshamov bound at high rates.Comment: 4 pages, submitted to ISIT 201

    On Universal Properties of Capacity-Approaching LDPC Ensembles

    Full text link
    This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check (LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels. Properties of the degree distributions, graphical complexity and the number of fundamental cycles in the bipartite graphs are considered via the derivation of information-theoretic bounds. These bounds are expressed in terms of the target block/ bit error probability and the gap (in rate) to capacity. Most of the bounds are general for any decoding algorithm, and some others are proved under belief propagation (BP) decoding. Proving these bounds under a certain decoding algorithm, validates them automatically also under any sub-optimal decoding algorithm. A proper modification of these bounds makes them universal for the set of all MBIOS channels which exhibit a given capacity. Bounds on the degree distributions and graphical complexity apply to finite-length LDPC codes and to the asymptotic case of an infinite block length. The bounds are compared with capacity-approaching LDPC code ensembles under BP decoding, and they are shown to be informative and are easy to calculate. Finally, some interesting open problems are considered.Comment: Published in the IEEE Trans. on Information Theory, vol. 55, no. 7, pp. 2956 - 2990, July 200

    Quickest Sequence Phase Detection

    Full text link
    A phase detection sequence is a length-nn cyclic sequence, such that the location of any length-kk contiguous subsequence can be determined from a noisy observation of that subsequence. In this paper, we derive bounds on the minimal possible kk in the limit of nβ†’βˆžn\to\infty, and describe some sequence constructions. We further consider multiple phase detection sequences, where the location of any length-kk contiguous subsequence of each sequence can be determined simultaneously from a noisy mixture of those subsequences. We study the optimal trade-offs between the lengths of the sequences, and describe some sequence constructions. We compare these phase detection problems to their natural channel coding counterparts, and show a strict separation between the fundamental limits in the multiple sequence case. Both adversarial and probabilistic noise models are addressed.Comment: To appear in the IEEE Transactions on Information Theor
    corecore