4,612 research outputs found

    Beyond Geometry : Towards Fully Realistic Wireless Models

    Full text link
    Signal-strength models of wireless communications capture the gradual fading of signals and the additivity of interference. As such, they are closer to reality than other models. However, nearly all theoretic work in the SINR model depends on the assumption of smooth geometric decay, one that is true in free space but is far off in actual environments. The challenge is to model realistic environments, including walls, obstacles, reflections and anisotropic antennas, without making the models algorithmically impractical or analytically intractable. We present a simple solution that allows the modeling of arbitrary static situations by moving from geometry to arbitrary decay spaces. The complexity of a setting is captured by a metricity parameter Z that indicates how far the decay space is from satisfying the triangular inequality. All results that hold in the SINR model in general metrics carry over to decay spaces, with the resulting time complexity and approximation depending on Z in the same way that the original results depends on the path loss term alpha. For distributed algorithms, that to date have appeared to necessarily depend on the planarity, we indicate how they can be adapted to arbitrary decay spaces. Finally, we explore the dependence on Z in the approximability of core problems. In particular, we observe that the capacity maximization problem has exponential upper and lower bounds in terms of Z in general decay spaces. In Euclidean metrics and related growth-bounded decay spaces, the performance depends on the exact metricity definition, with a polynomial upper bound in terms of Z, but an exponential lower bound in terms of a variant parameter phi. On the plane, the upper bound result actually yields the first approximation of a capacity-type SINR problem that is subexponential in alpha

    An Online Approach to Dynamic Channel Access and Transmission Scheduling

    Full text link
    Making judicious channel access and transmission scheduling decisions is essential for improving performance as well as energy and spectral efficiency in multichannel wireless systems. This problem has been a subject of extensive study in the past decade, and the resulting dynamic and opportunistic channel access schemes can bring potentially significant improvement over traditional schemes. However, a common and severe limitation of these dynamic schemes is that they almost always require some form of a priori knowledge of the channel statistics. A natural remedy is a learning framework, which has also been extensively studied in the same context, but a typical learning algorithm in this literature seeks only the best static policy, with performance measured by weak regret, rather than learning a good dynamic channel access policy. There is thus a clear disconnect between what an optimal channel access policy can achieve with known channel statistics that actively exploits temporal, spatial and spectral diversity, and what a typical existing learning algorithm aims for, which is the static use of a single channel devoid of diversity gain. In this paper we bridge this gap by designing learning algorithms that track known optimal or sub-optimal dynamic channel access and transmission scheduling policies, thereby yielding performance measured by a form of strong regret, the accumulated difference between the reward returned by an optimal solution when a priori information is available and that by our online algorithm. We do so in the context of two specific algorithms that appeared in [1] and [2], respectively, the former for a multiuser single-channel setting and the latter for a single-user multichannel setting. In both cases we show that our algorithms achieve sub-linear regret uniform in time and outperforms the standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201

    Joint Transmission and Energy Transfer Policies for Energy Harvesting Devices with Finite Batteries

    Full text link
    One of the main concerns in traditional Wireless Sensor Networks (WSNs) is energy efficiency. In this work, we analyze two techniques that can extend network lifetime. The first is Ambient \emph{Energy Harvesting} (EH), i.e., the capability of the devices to gather energy from the environment, whereas the second is Wireless \emph{Energy Transfer} (ET), that can be used to exchange energy among devices. We study the combination of these techniques, showing that they can be used jointly to improve the system performance. We consider a transmitter-receiver pair, showing how the ET improvement depends upon the statistics of the energy arrivals and the energy consumption of the devices. With the aim of maximizing a reward function, e.g., the average transmission rate, we find performance upper bounds with and without ET, define both online and offline optimization problems, and present results based on realistic energy arrivals in indoor and outdoor environments. We show that ET can significantly improve the system performance even when a sizable fraction of the transmitted energy is wasted and that, in some scenarios, the online approach can obtain close to optimal performance.Comment: 16 pages, 12 figure

    Optimizing the Age-of-Information for Mobile Users in Adversarial and Stochastic Environments

    Full text link
    We study a multi-user downlink scheduling problem for optimizing the freshness of information available to users roaming across multiple cells. We consider both adversarial and stochastic settings and design scheduling policies that optimize two distinct information freshness metrics, namely the average age-of-information and the peak age-of-information. We show that a natural greedy scheduling policy is competitive with the optimal offline policy in the adversarial setting. We also derive fundamental lower bounds to the competitive ratio achievable by any online policy. In the stochastic environment, we show that a Max-Weight scheduling policy that takes into account the channel statistics achieves an approximation factor of 22 for minimizing the average age of information in two extreme mobility scenarios. We conclude the paper by establishing a large-deviation optimality result achieved by the greedy policy for minimizing the peak age of information for static users situated at a single cell.Comment: arXiv admin note: text overlap with arXiv:2001.0547
    • …
    corecore