10,367 research outputs found

    Closed-loop separation control over a sharp edge ramp using Genetic Programming

    Full text link
    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number Reθ≈3 500Re_{\theta}\approx 3\,500 based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the backflow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by accelerating the shear layer growth. Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid

    Multi-fidelity data fusion through parameter space reduction with applications to automotive engineering

    Full text link
    Multi-fidelity models are of great importance due to their capability of fusing information coming from different simulations and sensors. Gaussian processes are employed for nonparametric regression in a Bayesian setting. They generalize linear regression embedding the inputs in a latent manifold inside an infinite-dimensional reproducing kernel Hilbert space. We can augment the inputs with the observations of low-fidelity models in order to learn a more expressive latent manifold and thus increment the model's accuracy. This can be realized recursively with a chain of Gaussian processes with incrementally higher fidelity. We would like to extend these multi-fidelity model realizations to case studies affected by a high-dimensional input space but with low intrinsic dimensionality. In these cases physical supported or purely numerical low-order models are still affected by the curse of dimensionality when queried for responses. When the model's gradient information is provided, the existence of an active subspace, or a nonlinear transformation of the input parameter space, can be exploited to design low-fidelity response surfaces and thus enable Gaussian process multi-fidelity regression, without the need to perform new simulations. This is particularly useful in the case of data scarcity. In this work, we present a new multi-fidelity approach involving active subspaces and nonlinear level-set learning method. We test the proposed numerical method on two different high-dimensional benchmarks, and on a more complex car aerodynamics problem. We show how a low intrinsic dimensionality bias can increase the accuracy of Gaussian process response surfaces.Comment: arXiv admin note: substantial text overlap with arXiv:2010.0834
    • …
    corecore