2,536 research outputs found

    Reliability Analysis of On-Demand High-Speed Machining

    Get PDF
    Current trends in high-speed machining aim to increase manufacturing efficiency by maximizing material removal rates and minimizing part cycle times. This project explores three related technologies and presents a system design for rapid production of custom machined parts. First a reliability analysis in high-speed machining of thin wall features is put forth with experimental results. Second an implementation of on-demand manufacturing is presented with emphasis on flexibility and automation. Finally innovative manufacturing cell design is used to drive costs down by optimizing material and information flow. The resulting high-speed on-demand machining cell design employs effective techniques to reduce production time, meet changing customer needs, and drive down costs

    Spartan Daily, May 2, 1974

    Get PDF
    Volume 62, Issue 45https://scholarworks.sjsu.edu/spartandaily/5869/thumbnail.jp

    An Exact Algorithm for Optimal Areal Positioning Problem with Rectangular Targets and Requests

    Get PDF
    In this thesis, we introduce a new class of problems, which we call Optimal Areal Positioning (OAP), and study a special form of these problems. OAPs have important applications in earth observation satellite management, tele-robotics, multi-camera control, and surveillance. In OAP, we would like to find the optimal position of a set of floating geometric objects (targets) on a two-dimensional plane to (partially) cover another set of fixed geometric objects (requests) in order to maximize the total reward obtained from covered parts of requests. In this thesis, we consider the special form of OAP in which targets and requests are parallel axes rectangles and targets are of equal size. A predetermined reward is associated with covering an area unit of each request. Based on the number of target rectangles, we classify rectangular OAP into two categories: Single Target Problem (STP) and Multi-Target Problem (MTP). The structure of MTP can be compared to the planar p-center which is NP-complete, if p is part of the input. In fact, we conjecture that MTP is NP-complete. The existing literature does not contain any work on MTP. The research contributions of this thesis are as follows: We develop new theoretical properties for the solution of STP and devised a new solution approach for it. This approach is based on a novel branch-and-bound (BB) algorithm devised over a reduced solution space. Branching is done using a clustering scheme. Our computational results show that in many cases our approach significantly outperforms the existing Plateau Vertex Traversal and brute force algorithms, especially for problems with many requests appearing in clusters over a large region. We perform a theoretical study of MTP for the first time and prove several theoretical properties for its solution. We have introduced a reduced solution space using these properties. We present the first exact algorithm to solve MTP. This algorithm has a branch-and-bound framework. The reduced solution space calls for a novel branching strategy for MTP. The algorithm has a main branch-and-bound tree with a special structure along with two trees (one for each axis) to store the information required for branching in the main tree in an efficient format. Branching is done using a clustering scheme. We perform computational experiments to evaluate the performance of our algorithm. Our algorithm solves relatively large instances of MTP in a short time

    Approximate Path Searching Method for Single-Satellite Observation and Transmission Task Planning Problem

    Get PDF
    Satellite task planning not only plans the observation tasks to collect images of the earth surface, but also schedules the transmission tasks to download images to the ground station for users’ using, which plays an important role in improving the efficiency of the satellite observation system. However, most of the work to our knowledge, scheduling the observation and transmission tasks separately, ignores the correlation between them in resource (e.g., energy and memory) consumption and acquisition. In this paper, we study the single-satellite observation and transmission task planning problem under a more accurate resource usage model. Two preprocessing strategies including graph partition and nondominated subpaths selection are used to decompose the problem, and an improved label-setting algorithm with the lower bound cutting strategy is proposed to maximize the total benefit. Finally, we compare the proposed method with other three algorithms based on three data sets, and the experimental result shows that our method can find the near-optimal solution in much less time
    • …
    corecore