109 research outputs found

    Statistical mechanics of error exponents for error-correcting codes

    Full text link
    Error exponents characterize the exponential decay, when increasing message length, of the probability of error of many error-correcting codes. To tackle the long standing problem of computing them exactly, we introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-density parity-check (LDPC) codes on the binary erasure channel (BEC) and the binary symmetric channel (BSC). In this formalism, we apply the cavity method for large deviations to derive expressions for both the average and typical error exponents, which differ by the procedure used to select the codes from specified ensembles. When decreasing the noise intensity, we find that two phase transitions take place, at two different levels: a glass to ferromagnetic transition in the space of codewords, and a paramagnetic to glass transition in the space of codes.Comment: 32 pages, 13 figure

    Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels

    Full text link
    We introduce a new family of concatenated codes with an outer low-density parity-check (LDPC) code and an inner low-density generator matrix (LDGM) code, and prove that these codes can achieve capacity under any memoryless binary-input output-symmetric (MBIOS) channel using maximum-likelihood (ML) decoding with bounded graphical complexity, i.e., the number of edges per information bit in their graphical representation is bounded. In particular, we also show that these codes can achieve capacity on the binary erasure channel (BEC) under belief propagation (BP) decoding with bounded decoding complexity per information bit per iteration for all erasure probabilities in (0, 1). By deriving and analyzing the average weight distribution (AWD) and the corresponding asymptotic growth rate of these codes with a rate-1 inner LDGM code, we also show that these codes achieve the Gilbert-Varshamov bound with asymptotically high probability. This result can be attributed to the presence of the inner rate-1 LDGM code, which is demonstrated to help eliminate high weight codewords in the LDPC code while maintaining a vanishingly small amount of low weight codewords.Comment: 17 pages, 2 figures. This paper is to be presented in the 43rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, USA, Sept. 28-30, 200

    Strong Secrecy for Erasure Wiretap Channels

    Full text link
    We show that duals of certain low-density parity-check (LDPC) codes, when used in a standard coset coding scheme, provide strong secrecy over the binary erasure wiretap channel (BEWC). This result hinges on a stopping set analysis of ensembles of LDPC codes with block length nn and girth ≥2k\geq 2k, for some k≥2k \geq 2. We show that if the minimum left degree of the ensemble is lminl_\mathrm{min}, the expected probability of block error is \calO(\frac{1}{n^{\lceil l_\mathrm{min} k /2 \rceil - k}}) when the erasure probability ϵ<ϵef\epsilon < \epsilon_\mathrm{ef}, where ϵef\epsilon_\mathrm{ef} depends on the degree distribution of the ensemble. As long as lmin>2l_\mathrm{min} > 2 and k>2k > 2, the dual of this LDPC code provides strong secrecy over a BEWC of erasure probability greater than 1−ϵef1 - \epsilon_\mathrm{ef}.Comment: Submitted to the Information Theory Workship (ITW) 2010, Dubli

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor
    • …
    corecore