68 research outputs found

    Uplink Analysis of Large MU-MIMO Systems With Space-Constrained Arrays in Ricean Fading

    Full text link
    Closed-form approximations to the expected per-terminal signal-to-interference-plus-noise-ratio (SINR) and ergodic sum spectral efficiency of a large multiuser multiple-input multiple-output system are presented. Our analysis assumes correlated Ricean fading with maximum ratio combining on the uplink, where the base station (BS) is equipped with a uniform linear array (ULA) with physical size restrictions. Unlike previous studies, our model caters for the presence of unequal correlation matrices and unequal Rice factors for each terminal. As the number of BS antennas grows without bound, with a finite number of terminals, we derive the limiting expected per-terminal SINR and ergodic sum spectral efficiency of the system. Our findings suggest that with restrictions on the size of the ULA, the expected SINR saturates with increasing operating signal-to-noise-ratio (SNR) and BS antennas. Whilst unequal correlation matrices result in higher performance, the presence of strong line-of-sight (LoS) has an opposite effect. Our analysis accommodates changes in system dimensions, SNR, LoS levels, spatial correlation levels and variations in fixed physical spacings of the BS array.Comment: 7 pages, 3 figures, accepted for publication in the proceedings of IEEE ICC, to be held in Paris, France, May 201

    Impact of Line-of-Sight and Unequal Spatial Correlation on Uplink MU-MIMO Systems

    Get PDF
    Closed-form approximations of the expected per-terminal signal-to-interference-plus-noise-ratio (SINR) and ergodic sum spectral efficiency of a multiuser multiple-input multiple-output system are presented. Our analysis assumes spatially correlated Ricean fading channels with maximum-ratio combining on the uplink. Unlike previous studies, our model accounts for the presence of unequal correlation matrices, unequal Rice factors, as well as unequal link gains to each terminal. The derived approximations lend themselves to useful insights, special cases and demonstrate the aggregate impact of line-of-sight (LoS) and unequal correlation matrices. Numerical results show that while unequal correlation matrices enhance the expected SINR and ergodic sum spectral efficiency, the presence of strong LoS has an opposite effect. Our approximations are general and remain insensitive to changes in the system dimensions, signal-to-noise-ratios, LoS levels and unequal correlation levels.Comment: 4 pages, 2 figures, accepted for publication in the IEEE Wireless Communications Letters, Vol. 6, 201

    Power Scaling of Uplink Massive MIMO Systems with Arbitrary-Rank Channel Means

    Full text link
    This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean KK-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas, MM, grows large, while the transmit power of each user can be scaled down proportionally to 1/M1/M. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean KK-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1/M1/\sqrt M. In addition, we show that with an increasing Ricean KK-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers

    Does Massive MIMO Fail in Ricean Channels?

    Get PDF
    Massive multiple-input multiple-output (MIMO) is now making its way to the standardization exercise of future 5G networks. Yet, there are still fundamental questions pertaining to the robustness of massive MIMO against physically detrimental propagation conditions. On these grounds, we identify scenarios under which massive MIMO can potentially fail in Ricean channels, and characterize them physically, as well as, mathematically. Our analysis extends and generalizes a stream of recent papers on this topic and articulates emphatically that such harmful scenarios in Ricean fading conditions are unlikely and can be compensated using any standard scheduling scheme. This implies that massive MIMO is intrinsically effective at combating interuser interference and, if needed, can avail of the base-station scheduler for further robustness.Comment: IEEE Wireless Communications Letters, accepte

    Analysis and Design of Cell-Free Massive MIMO Systems under Spatially Correlated Fading Channels

    Get PDF
    Mención Internacional en el título de doctorWireless communications have become a key pillar in our modern society. It can be hard to think of a service that somehow does not rely on them. Particularly, mobile networks are one of the most necessary technologies in our daily life. This produces that the demand for data rates is by no means stopping from increasing. The cellular architecture is facing a crucial challenge under limited performance by interference and spectrum saturation. This involves cell-edge users experiencing poor performance due to the close vicinity of base stations (BSs) using the same carrier frequency. Based on a combination of the coordinated multi-point (CoMP) technique and traditional massive multiple-input multiple-output (MIMO) systems, cell-free (CF) massive MIMO networks have irrupted as a solution for avoiding inter-cell interference issues and for providing uniform service in large coverage areas. This thesis focuses on the analysis and design of CF massive MIMO networks assuming a spatially correlated fading model. A general-purpose channel model is provided and the whole network functioning is given in detail. Despite the many characteristics a CF massive MIMO system shares with conventional colocated massive MIMO its distributed nature brings along new issues that need to be carefully accounted for. In particular, the so-called channel hardening effect that postulates that the variance of the compound wireless channel experienced by a given user from a large number of transmit antennas tends to vanish, effectively making the channel deterministic. This critical assumption, which permeates most theoretical results of massive MIMO, has been well investigated and validated in centralized architectures, however, it has received little attention in the context of CF massive MIMO networks. Hardening in CF architectures is potentially compromised by the different large-scale gains each access point (AP) impinges on the transmitted signal to each user, a condition that is further stressed when not all APs transmit to all users as proposed in the user-centric (UC) variations of CF massive MIMO. In this document, the presence of channel hardening in this new architecture scheme is addressed using distributed and cooperative precoders and combiners and different power control strategies. It is shown that the line-of-sight (LOS) component, spatially correlated antennas, and clustering schemes have an impact on how the channel hardens. In addition, we examine the existent gap between the estimated achievable rate and the true network performance when channel hardening is compromised. Exact closed-form expressions for both a hardening metric and achievable downlink (DL) and uplink (UL) rates are given as well. We also look into the pilot contamination problem in the UL and DL with different degrees of cooperation between the APs. The optimum minimum mean-squared error (MMSE) processing can take advantage of large-scale fading coefficients for canceling the interference of pilot-sharing users and thus achieves asymptotically unbounded capacity. However, it is computationally demanding and can only be implemented in a fully centralized network. Here, sub-optimal schemes are derived that provide unbounded capacity with much lower complexity and using only local channel estimates but global channel statistics. This makes them suited for both centralized and distributed networks. In this latter case, the best performance is achieved with a generalized maximum ratio combiner that maximizes a capacity bound based on channel statistics only.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Rui Dinis.- Secretario: María Julia Fernández-Getino García.- Vocal: Carmen Botella Mascarel

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    Get PDF
    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index

    Tightness of Jensen’s Bounds and Applications to MIMO Communications

    Get PDF
    corecore