5,963 research outputs found

    Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

    Get PDF
    Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femtocells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of smallcells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-onedge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-onedge configuration to establish a greener network over the other competitive configurations

    Downlink and Uplink Decoupling: a Disruptive Architectural Design for 5G Networks

    Full text link
    Cell association in cellular networks has traditionally been based on the downlink received signal power only, despite the fact that up and downlink transmission powers and interference levels differed significantly. This approach was adequate in homogeneous networks with macro base stations all having similar transmission power levels. However, with the growth of heterogeneous networks where there is a big disparity in the transmit power of the different base station types, this approach is highly inefficient. In this paper, we study the notion of Downlink and Uplink Decoupling (DUDe) where the downlink cell association is based on the downlink received power while the uplink is based on the pathloss. We present the motivation and assess the gains of this 5G design approach with simulations that are based on Vodafone's LTE field trial network in a dense urban area, employing a high resolution ray-tracing pathloss prediction and realistic traffic maps based on live network measurements.Comment: 6 pages, 7 figures, conference paper, submitted to IEEE GLOBECOM 201

    User Transmit Power Minimization through Uplink Resource Allocation and User Association in HetNets

    Full text link
    The popularity of cellular internet of things (IoT) is increasing day by day and billions of IoT devices will be connected to the internet. Many of these devices have limited battery life with constraints on transmit power. High user power consumption in cellular networks restricts the deployment of many IoT devices in 5G. To enable the inclusion of these devices, 5G should be supplemented with strategies and schemes to reduce user power consumption. Therefore, we present a novel joint uplink user association and resource allocation scheme for minimizing user transmit power while meeting the quality of service. We analyze our scheme for two-tier heterogeneous network (HetNet) and show an average transmit power of -2.8 dBm and 8.2 dBm for our algorithms compared to 20 dBm in state-of-the-art Max reference signal received power (RSRP) and channel individual offset (CIO) based association schemes
    • …
    corecore