16 research outputs found

    Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph

    Get PDF
    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort, and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that influence-based graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201

    MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers

    Full text link
    Existing research on malware classification focuses almost exclusively on two tasks: distinguishing between malicious and benign files and classifying malware by family. However, malware can be categorized according to many other types of attributes, and the ability to identify these attributes in newly-emerging malware using machine learning could provide significant value to analysts. In particular, we have identified four tasks which are under-represented in prior work: classification by behaviors that malware exhibit, platforms that malware run on, vulnerabilities that malware exploit, and packers that malware are packed with. To obtain labels for training and evaluating ML classifiers on these tasks, we created an antivirus (AV) tagging tool called ClarAVy. ClarAVy's sophisticated AV label parser distinguishes itself from prior AV-based taggers, with the ability to accurately parse 882 different AV label formats used by 90 different AV products. We are releasing benchmark datasets for each of these four classification tasks, tagged using ClarAVy and comprising nearly 5.5 million malicious files in total. Our malware behavior dataset includes 75 distinct tags - nearly 7x more than the only prior benchmark dataset with behavioral tags. To our knowledge, we are the first to release datasets with malware platform and packer tags

    A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory Analysis

    Get PDF
    Now a day the threat of malware is increasing rapidly. A software that sneaks to your computer system without your knowledge with a harmful intent to disrupt your computer operations. Due to the vast number of malware, it is impossible to handle malware by human engineers. Therefore, security researchers are taking great efforts to develop accurate and effective techniques to detect malware. This paper presents a semantic and detailed survey of methods used for malware detection like signature-based and heuristic-based. The Signature-based technique is largely used today by anti-virus software to detect malware, is fast and capable to detect known malware. However, it is not effective in detecting zero-day malware and it is easily defeated by malware that use obfuscation techniques. Likewise, a considerable false positive rate and high amount of scanning time are the main limitations of heuristic-based techniques. Alternatively, memory analysis is a promising technique that gives a comprehensive view of malware and it is expected to become more popular in malware analysis. The main contributions of this paper are: (1) providing an overview of malware types and malware detection approaches, (2) discussing the current malware analysis techniques, their findings and limitations, (3) studying the malware obfuscation, attacking and anti-analysis techniques, and (4) exploring the structure of memory-based analysis in malware detection. The detection approaches have been compared with each other according to their techniques, selected features, accuracy rates, and their advantages and disadvantages. This paper aims to help the researchers to have a general view of malware detection field and to discuss the importance of memory-based analysis in malware detection

    FPGA implementation of naive bayes classifier for network security

    Get PDF
    In the vast usage of internet nowadays, the rate of cybercrime such as fraud, hacking, identity theft, network intrusion, software piracy and espionage are becoming more critical. Malware code writers used this chance to create malware that able to breach the security and gain access to the information. Hence, the importance of malware detection system becoming more significant as the users need the protection from the malware threats. Most of malware detection systems implement signature based classification where only known malware can be detected. Nowadays, new malwares are able to change its signature sequence regularly in order to avoid detection. This polymorphic malware becomes the limitation for signature based detection approach. This project aim is to proposed signature-based detection approach that able to detect polymorphic malware by using Naïve Bayes algorithm. The integration of the classifier architecture onto FPGA board in order to measures the performances of the system. The feature from network traffic subset to Snort signature detection of known malware and benign samples are extracted using overlapping Ngram string format. The data set is then being used for training and testing for the classifier. The classifier for the malware detection used Naïve Bayes algorithm that using Bayesian Theorem probability for the features in the data set to determine types of the flow. The model is then being implemented into hardware FPGA architecture and being coded in RTL. The target FPGA that being used in Vivado software is Xilinx Virtex-7 VC709 that able to support the system requirements. The hardware performance of the model was analyzed and compared with the Naïve Bayes software classifier for the performance evaluation. The proposed hardware NB malware detection classifier has managed to achieve 96.3% accuracy and improved FPR rate of 3.1%. The hardware NB malware detection classifier on FPGA architecture also able to achieve better resource utilization and improved detection speed of 0.13 μs per flow

    Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics

    Get PDF
    The availability of massive amounts of data, fast computers, and superior machine learning (ML) algorithms has spurred interest in artificial intelligence (AI). It is no surprise, then, that we observe an increase in the application of AI in cybersecurity. Our survey of AI applications in cybersecurity shows most of the present applications are in the areas of malware identification and classification, intrusion detection, and cybercrime prevention. We should, however, be aware that AI-enabled cybersecurity is not without its drawbacks. Challenges to AI solutions include a shortage of good quality data to train machine learning models, the potential for exploits via adversarial AI/ML, and limited human expertise in AI. However, the rewards in terms of increased accuracy of cyberattack predictions, faster response to cyberattacks, and improved cybersecurity make it worthwhile to overcome these challenges. We present a summary of the current research on the application of AI and ML to improve cybersecurity, challenges that need to be overcome, and research opportunities for academics in management information systems
    corecore