6 research outputs found

    Unsupervised Spoken Term Detection with Spoken Queries by Multi-level Acoustic Patterns with Varying Model Granularity

    Full text link
    This paper presents a new approach for unsupervised Spoken Term Detection with spoken queries using multiple sets of acoustic patterns automatically discovered from the target corpus. The different pattern HMM configurations(number of states per model, number of distinct models, number of Gaussians per state)form a three-dimensional model granularity space. Different sets of acoustic patterns automatically discovered on different points properly distributed over this three-dimensional space are complementary to one another, thus can jointly capture the characteristics of the spoken terms. By representing the spoken content and spoken query as sequences of acoustic patterns, a series of approaches for matching the pattern index sequences while considering the signal variations are developed. In this way, not only the on-line computation load can be reduced, but the signal distributions caused by different speakers and acoustic conditions can be reasonably taken care of. The results indicate that this approach significantly outperformed the unsupervised feature-based DTW baseline by 16.16\% in mean average precision on the TIMIT corpus.Comment: Accepted by ICASSP 201

    Unsupervised speech processing with applications to query-by-example spoken term detection

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-173).This thesis is motivated by the challenge of searching and extracting useful information from speech data in a completely unsupervised setting. In many real world speech processing problems, obtaining annotated data is not cost and time effective. We therefore ask how much can we learn from speech data without any transcription. To address this question, in this thesis, we chose the query-by-example spoken term detection as a specific scenario to demonstrate that this task can be done in the unsupervised setting without any annotations. To build the unsupervised spoken term detection framework, we contributed three main techniques to form a complete working flow. First, we present two posteriorgram-based speech representations which enable speaker-independent, and noisy spoken term matching. The feasibility and effectiveness of both posteriorgram features are demonstrated through a set of spoken term detection experiments on different datasets. Second, we show two lower-bounding based methods for Dynamic Time Warping (DTW) based pattern matching algorithms. Both algorithms greatly outperform the conventional DTW in a single-threaded computing environment. Third, we describe the parallel implementation of the lower-bounded DTW search algorithm. Experimental results indicate that the total running time of the entire spoken detection system grows linearly with corpus size. We also present the training of large Deep Belief Networks (DBNs) on Graphical Processing Units (GPUs). The phonetic classification experiment on the TIMIT corpus showed a speed-up of 36x for pre-training and 45x for back-propagation for a two-layer DBN trained on the GPU platform compared to the CPU platform.by Yaodong Zhang.Ph.D

    Grapheme-based Automatic Speech Recognition using Probabilistic Lexical Modeling

    Get PDF
    Automatic speech recognition (ASR) systems incorporate expert knowledge of language or the linguistic expertise through the use of phone pronunciation lexicon (or dictionary) where each word is associated with a sequence of phones. The creation of phone pronunciation lexicon for a new language or domain is costly as it requires linguistic expertise, and includes time and money. In this thesis, we focus on effective building of ASR systems in the absence of linguistic expertise for a new domain or language. Particularly, we consider graphemes as alternate subword units for speech recognition. In a grapheme lexicon, pronunciation of a word is derived from its orthography. However, modeling graphemes for speech recognition is a challenging task for two reasons. Firstly, grapheme-to-phoneme (G2P) relationship can be ambiguous as languages continue to evolve after their spelling has been standardized. Secondly, as elucidated in this thesis, typically ASR systems directly model the relationship between graphemes and acoustic features; and the acoustic features depict the envelope of speech, which is related to phones. In this thesis, a grapheme-based ASR approach is proposed where the modeling of the relationship between graphemes and acoustic features is factored through a latent variable into two models, namely, acoustic model and lexical model. In the acoustic model the relationship between latent variables and acoustic features is modeled, while in the lexical model a probabilistic relationship between latent variables and graphemes is modeled. We refer to the proposed approach as probabilistic lexical modeling based ASR. In the thesis we show that the latent variables can be phones or multilingual phones or clustered context-dependent subword units; and an acoustic model can be trained on domain-independent or language-independent resources. The lexical model is trained on transcribed speech data from the target domain or language. In doing so, the parameters of the lexical model capture a probabilistic relationship between graphemes and phones. In the proposed grapheme-based ASR approach, lexicon learning is implicitly integrated as a phase in ASR system training as opposed to the conventional approach where first phone pronunciation lexicon is developed and then a phone-based ASR system is trained. The potential and the efficacy of the proposed approach is demonstrated through experiments and comparisons with other standard approaches on ASR for resource rich languages, nonnative and accented speech, under-resourced languages, and minority languages. The studies revealed that the proposed framework is particularly suitable when the task is challenged by the lack of both linguistic expertise and transcribed data. Furthermore, our investigations also showed that standard ASR approaches in which the lexical model is deterministic are more suitable for phones than graphemes, while probabilistic lexical model based ASR approach is suitable for both. Finally, we show that the captured grapheme-to-phoneme relationship can be exploited to perform acoustic data-driven G2P conversion
    corecore