44,236 research outputs found

    Which Features are Learnt by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression

    Full text link
    Contrastive learning (CL) has emerged as a powerful technique for representation learning, with or without label supervision. However, supervised CL is prone to collapsing representations of subclasses within a class by not capturing all their features, and unsupervised CL may suppress harder class-relevant features by focusing on learning easy class-irrelevant features; both significantly compromise representation quality. Yet, there is no theoretical understanding of \textit{class collapse} or \textit{feature suppression} at \textit{test} time. We provide the first unified theoretically rigorous framework to determine \textit{which} features are learnt by CL. Our analysis indicate that, perhaps surprisingly, bias of (stochastic) gradient descent towards finding simpler solutions is a key factor in collapsing subclass representations and suppressing harder class-relevant features. Moreover, we present increasing embedding dimensionality and improving the quality of data augmentations as two theoretically motivated solutions to {feature suppression}. We also provide the first theoretical explanation for why employing supervised and unsupervised CL together yields higher-quality representations, even when using commonly-used stochastic gradient methods.Comment: to appear at ICML 202

    Detection of Review Abuse via Semi-Supervised Binary Multi-Target Tensor Decomposition

    Full text link
    Product reviews and ratings on e-commerce websites provide customers with detailed insights about various aspects of the product such as quality, usefulness, etc. Since they influence customers' buying decisions, product reviews have become a fertile ground for abuse by sellers (colluding with reviewers) to promote their own products or to tarnish the reputation of competitor's products. In this paper, our focus is on detecting such abusive entities (both sellers and reviewers) by applying tensor decomposition on the product reviews data. While tensor decomposition is mostly unsupervised, we formulate our problem as a semi-supervised binary multi-target tensor decomposition, to take advantage of currently known abusive entities. We empirically show that our multi-target semi-supervised model achieves higher precision and recall in detecting abusive entities as compared to unsupervised techniques. Finally, we show that our proposed stochastic partial natural gradient inference for our model empirically achieves faster convergence than stochastic gradient and Online-EM with sufficient statistics.Comment: Accepted to the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2019. Contains supplementary material. arXiv admin note: text overlap with arXiv:1804.0383

    Practical recommendations for gradient-based training of deep architectures

    Full text link
    Learning algorithms related to artificial neural networks and in particular for Deep Learning may seem to involve many bells and whistles, called hyper-parameters. This chapter is meant as a practical guide with recommendations for some of the most commonly used hyper-parameters, in particular in the context of learning algorithms based on back-propagated gradient and gradient-based optimization. It also discusses how to deal with the fact that more interesting results can be obtained when allowing one to adjust many hyper-parameters. Overall, it describes elements of the practice used to successfully and efficiently train and debug large-scale and often deep multi-layer neural networks. It closes with open questions about the training difficulties observed with deeper architectures
    • …
    corecore