22 research outputs found

    Learning weakly supervised multimodal phoneme embeddings

    Full text link
    Recent works have explored deep architectures for learning multimodal speech representation (e.g. audio and images, articulation and audio) in a supervised way. Here we investigate the role of combining different speech modalities, i.e. audio and visual information representing the lips movements, in a weakly supervised way using Siamese networks and lexical same-different side information. In particular, we ask whether one modality can benefit from the other to provide a richer representation for phone recognition in a weakly supervised setting. We introduce mono-task and multi-task methods for merging speech and visual modalities for phone recognition. The mono-task learning consists in applying a Siamese network on the concatenation of the two modalities, while the multi-task learning receives several different combinations of modalities at train time. We show that multi-task learning enhances discriminability for visual and multimodal inputs while minimally impacting auditory inputs. Furthermore, we present a qualitative analysis of the obtained phone embeddings, and show that cross-modal visual input can improve the discriminability of phonological features which are visually discernable (rounding, open/close, labial place of articulation), resulting in representations that are closer to abstract linguistic features than those based on audio only

    Common Representation Learning Using Step-based Correlation Multi-Modal CNN

    Full text link
    Deep learning techniques have been successfully used in learning a common representation for multi-view data, wherein the different modalities are projected onto a common subspace. In a broader perspective, the techniques used to investigate common representation learning falls under the categories of canonical correlation-based approaches and autoencoder based approaches. In this paper, we investigate the performance of deep autoencoder based methods on multi-view data. We propose a novel step-based correlation multi-modal CNN (CorrMCNN) which reconstructs one view of the data given the other while increasing the interaction between the representations at each hidden layer or every intermediate step. Finally, we evaluate the performance of the proposed model on two benchmark datasets - MNIST and XRMB. Through extensive experiments, we find that the proposed model achieves better performance than the current state-of-the-art techniques on joint common representation learning and transfer learning tasks.Comment: Accepted in Asian Conference of Pattern Recognition (ACPR-2017

    Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations

    Full text link
    Deep CCA is a recently proposed deep neural network extension to the traditional canonical correlation analysis (CCA), and has been successful for multi-view representation learning in several domains. However, stochastic optimization of the deep CCA objective is not straightforward, because it does not decouple over training examples. Previous optimizers for deep CCA are either batch-based algorithms or stochastic optimization using large minibatches, which can have high memory consumption. In this paper, we tackle the problem of stochastic optimization for deep CCA with small minibatches, based on an iterative solution to the CCA objective, and show that we can achieve as good performance as previous optimizers and thus alleviate the memory requirement.Comment: in 2015 Annual Allerton Conference on Communication, Control and Computin
    corecore