1,203 research outputs found

    Statistical analysis driven optimized deep learning system for intrusion detection

    Get PDF
    Attackers have developed ever more sophisticated and intelligent ways to hack information and communication technology systems. The extent of damage an individual hacker can carry out upon infiltrating a system is well understood. A potentially catastrophic scenario can be envisaged where a nation-state intercepting encrypted financial data gets hacked. Thus, intelligent cybersecurity systems have become inevitably important for improved protection against malicious threats. However, as malware attacks continue to dramatically increase in volume and complexity, it has become ever more challenging for traditional analytic tools to detect and mitigate threat. Furthermore, a huge amount of data produced by large networks has made the recognition task even more complicated and challenging. In this work, we propose an innovative statistical analysis driven optimized deep learning system for intrusion detection. The proposed intrusion detection system (IDS) extracts optimized and more correlated features using big data visualization and statistical analysis methods (human-in-the-loop), followed by a deep autoencoder for potential threat detection. Specifically, a pre-processing module eliminates the outliers and converts categorical variables into one-hot-encoded vectors. The feature extraction module discard features with null values and selects the most significant features as input to the deep autoencoder model (trained in a greedy-wise manner). The NSL-KDD dataset from the Canadian Institute for Cybersecurity is used as a benchmark to evaluate the feasibility and effectiveness of the proposed architecture. Simulation results demonstrate the potential of our proposed system and its outperformance as compared to existing state-of-the-art methods and recently published novel approaches. Ongoing work includes further optimization and real-time evaluation of our proposed IDS.Comment: To appear in the 9th International Conference on Brain Inspired Cognitive Systems (BICS 2018

    Network Intrusion Detection Using Autoencode Neural Network

    Get PDF
    In today's interconnected digital landscape, safeguarding computer networks against unauthorized access and cyber threats is of paramount importance. NIDS play a crucial role in identifying and mitigating potential security breaches. This research paper explores the application of autoencoder neural networks, a subset of deep learning techniques, in the realm of Network Intrusion Detection.Autoencoder neural networks are known for their ability to learn and represent data in a compressed, low-dimensional form. This study investigates their potential in modeling network traffic patterns and identifying anomalous activities. By training autoencoder networks on both normal and malicious network traffic data, we aim to create effective intrusion detection models that can distinguish between benign and malicious network behavior.The paper provides an in-depth analysis of the architecture and training methodologies of autoencoder neural networks for intrusion detection. It also explores various data preprocessing techniques and feature engineering approaches to enhance the model's performance. Additionally, the research evaluates the robustness and scalability of autoencoder-based NIDS in real-world network environments. Furthermore, ethical considerations in network intrusion detection, including privacy concerns and false positive rates, are discussed. It addresses the need for a balanced approach that ensures network security while respecting user privacy and minimizing disruptions. operation. This approach compresses the majority samples & increases the minority sample count in tough samples so that the IDS can achieve greater classification accuracy

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Autoencoder based anomaly detection for SCADA networks

    Get PDF
    Supervisory control and data acquisition (SCADA) systems are industrial control systems that are used to monitor critical infrastructures such as airports, transport, health, and public services of national importance. These are cyber physical systems, which are increasingly integrated with networks and internet of things devices. However, this results in a larger attack surface for cyber threats, making it important to identify and thwart cyber-attacks by detecting anomalous network traffic patterns. Compared to other techniques, as well as detecting known attack patterns, machine learning can also detect new and evolving threats. Autoencoders are a type of neural network that generates a compressed representation of its input data and through reconstruction loss of inputs can help identify anomalous data. This paper proposes the use of autoencoders for unsupervised anomaly-based intrusion detection using an appropriate differentiating threshold from the loss distribution and demonstrate improvements in results compared to other techniques for SCADA gas pipeline dataset
    corecore