304,088 research outputs found
Classification under Streaming Emerging New Classes: A Solution using Completely Random Trees
This paper investigates an important problem in stream mining, i.e.,
classification under streaming emerging new classes or SENC. The common
approach is to treat it as a classification problem and solve it using either a
supervised learner or a semi-supervised learner. We propose an alternative
approach by using unsupervised learning as the basis to solve this problem. The
SENC problem can be decomposed into three sub problems: detecting emerging new
classes, classifying for known classes, and updating models to enable
classification of instances of the new class and detection of more emerging new
classes. The proposed method employs completely random trees which have been
shown to work well in unsupervised learning and supervised learning
independently in the literature. This is the first time, as far as we know,
that completely random trees are used as a single common core to solve all
three sub problems: unsupervised learning, supervised learning and model update
in data streams. We show that the proposed unsupervised-learning-focused method
often achieves significantly better outcomes than existing
classification-focused methods
Unsupervised Learning of Edges
Data-driven approaches for edge detection have proven effective and achieve
top results on modern benchmarks. However, all current data-driven edge
detectors require manual supervision for training in the form of hand-labeled
region segments or object boundaries. Specifically, human annotators mark
semantically meaningful edges which are subsequently used for training. Is this
form of strong, high-level supervision actually necessary to learn to
accurately detect edges? In this work we present a simple yet effective
approach for training edge detectors without human supervision. To this end we
utilize motion, and more specifically, the only input to our method is noisy
semi-dense matches between frames. We begin with only a rudimentary knowledge
of edges (in the form of image gradients), and alternate between improving
motion estimation and edge detection in turn. Using a large corpus of video
data, we show that edge detectors trained using our unsupervised scheme
approach the performance of the same methods trained with full supervision
(within 3-5%). Finally, we show that when using a deep network for the edge
detector, our approach provides a novel pre-training scheme for object
detection.Comment: Camera ready version for CVPR 201
Occlusion Aware Unsupervised Learning of Optical Flow
It has been recently shown that a convolutional neural network can learn
optical flow estimation with unsupervised learning. However, the performance of
the unsupervised methods still has a relatively large gap compared to its
supervised counterpart. Occlusion and large motion are some of the major
factors that limit the current unsupervised learning of optical flow methods.
In this work we introduce a new method which models occlusion explicitly and a
new warping way that facilitates the learning of large motion. Our method shows
promising results on Flying Chairs, MPI-Sintel and KITTI benchmark datasets.
Especially on KITTI dataset where abundant unlabeled samples exist, our
unsupervised method outperforms its counterpart trained with supervised
learning.Comment: CVPR 2018 Camera-read
Unsupervised Learning via Total Correlation Explanation
Learning by children and animals occurs effortlessly and largely without
obvious supervision. Successes in automating supervised learning have not
translated to the more ambiguous realm of unsupervised learning where goals and
labels are not provided. Barlow (1961) suggested that the signal that brains
leverage for unsupervised learning is dependence, or redundancy, in the sensory
environment. Dependence can be characterized using the information-theoretic
multivariate mutual information measure called total correlation. The principle
of Total Cor-relation Ex-planation (CorEx) is to learn representations of data
that "explain" as much dependence in the data as possible. We review some
manifestations of this principle along with successes in unsupervised learning
problems across diverse domains including human behavior, biology, and
language.Comment: Invited contribution for IJCAI 2017 Early Career Spotlight. 5 pages,
1 figur
Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning
We show that denoising of 3D point clouds can be learned unsupervised,
directly from noisy 3D point cloud data only. This is achieved by extending
recent ideas from learning of unsupervised image denoisers to unstructured 3D
point clouds. Unsupervised image denoisers operate under the assumption that a
noisy pixel observation is a random realization of a distribution around a
clean pixel value, which allows appropriate learning on this distribution to
eventually converge to the correct value. Regrettably, this assumption is not
valid for unstructured points: 3D point clouds are subject to total noise, i.
e., deviations in all coordinates, with no reliable pixel grid. Thus, an
observation can be the realization of an entire manifold of clean 3D points,
which makes a na\"ive extension of unsupervised image denoisers to 3D point
clouds impractical. Overcoming this, we introduce a spatial prior term, that
steers converges to the unique closest out of the many possible modes on a
manifold. Our results demonstrate unsupervised denoising performance similar to
that of supervised learning with clean data when given enough training examples
- whereby we do not need any pairs of noisy and clean training data.Comment: Proceedings of ICCV 201
- …
