55,481 research outputs found

    Structure propagation for zero-shot learning

    Full text link
    The key of zero-shot learning (ZSL) is how to find the information transfer model for bridging the gap between images and semantic information (texts or attributes). Existing ZSL methods usually construct the compatibility function between images and class labels with the consideration of the relevance on the semantic classes (the manifold structure of semantic classes). However, the relationship of image classes (the manifold structure of image classes) is also very important for the compatibility model construction. It is difficult to capture the relationship among image classes due to unseen classes, so that the manifold structure of image classes often is ignored in ZSL. To complement each other between the manifold structure of image classes and that of semantic classes information, we propose structure propagation (SP) for improving the performance of ZSL for classification. SP can jointly consider the manifold structure of image classes and that of semantic classes for approximating to the intrinsic structure of object classes. Moreover, the SP can describe the constrain condition between the compatibility function and these manifold structures for balancing the influence of the structure propagation iteration. The SP solution provides not only unseen class labels but also the relationship of two manifold structures that encode the positive transfer in structure propagation. Experimental results demonstrate that SP can attain the promising results on the AwA, CUB, Dogs and SUN databases

    Semi-supervised Segmentation Fusion of Multi-spectral and Aerial Images

    Full text link
    A Semi-supervised Segmentation Fusion algorithm is proposed using consensus and distributed learning. The aim of Unsupervised Segmentation Fusion (USF) is to achieve a consensus among different segmentation outputs obtained from different segmentation algorithms by computing an approximate solution to the NP problem with less computational complexity. Semi-supervision is incorporated in USF using a new algorithm called Semi-supervised Segmentation Fusion (SSSF). In SSSF, side information about the co-occurrence of pixels in the same or different segments is formulated as the constraints of a convex optimization problem. The results of the experiments employed on artificial and real-world benchmark multi-spectral and aerial images show that the proposed algorithms perform better than the individual state-of-the art segmentation algorithms.Comment: A version of the manuscript was published in ICPR 201

    Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

    Full text link
    Despite rapid advances in face recognition, there remains a clear gap between the performance of still image-based face recognition and video-based face recognition, due to the vast difference in visual quality between the domains and the difficulty of curating diverse large-scale video datasets. This paper addresses both of those challenges, through an image to video feature-level domain adaptation approach, to learn discriminative video frame representations. The framework utilizes large-scale unlabeled video data to reduce the gap between different domains while transferring discriminative knowledge from large-scale labeled still images. Given a face recognition network that is pretrained in the image domain, the adaptation is achieved by (i) distilling knowledge from the network to a video adaptation network through feature matching, (ii) performing feature restoration through synthetic data augmentation and (iii) learning a domain-invariant feature through a domain adversarial discriminator. We further improve performance through a discriminator-guided feature fusion that boosts high-quality frames while eliminating those degraded by video domain-specific factors. Experiments on the YouTube Faces and IJB-A datasets demonstrate that each module contributes to our feature-level domain adaptation framework and substantially improves video face recognition performance to achieve state-of-the-art accuracy. We demonstrate qualitatively that the network learns to suppress diverse artifacts in videos such as pose, illumination or occlusion without being explicitly trained for them.Comment: accepted for publication at International Conference on Computer Vision (ICCV) 201

    Integrated Deep and Shallow Networks for Salient Object Detection

    Full text link
    Deep convolutional neural network (CNN) based salient object detection methods have achieved state-of-the-art performance and outperform those unsupervised methods with a wide margin. In this paper, we propose to integrate deep and unsupervised saliency for salient object detection under a unified framework. Specifically, our method takes results of unsupervised saliency (Robust Background Detection, RBD) and normalized color images as inputs, and directly learns an end-to-end mapping between inputs and the corresponding saliency maps. The color images are fed into a Fully Convolutional Neural Networks (FCNN) adapted from semantic segmentation to exploit high-level semantic cues for salient object detection. Then the results from deep FCNN and RBD are concatenated to feed into a shallow network to map the concatenated feature maps to saliency maps. Finally, to obtain a spatially consistent saliency map with sharp object boundaries, we fuse superpixel level saliency map at multi-scale. Extensive experimental results on 8 benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art approaches with a margin.Comment: Accepted by IEEE International Conference on Image Processing (ICIP) 201
    corecore