2 research outputs found

    A Translation And Rotation Independent Fingerprint Identification Approach

    Get PDF
    This thesis describes a new approach for fingerprint identification that will be shift and rotation independent. Detailed descriptions of directional filtering, foreground and background segmentation, feature extraction, and matching based on structural correlation are the main topics of this thesis. The fingerprint identification system consists of image preprocessing, feature extraction, and matching which run on a PC platform. The preprocessing step includes histogram equalization, block-based directional filtering, thinning, and adaptive thresholding to enhance the original images for successful feature extraction. The features extracted will be stored in the database for matching. The matching algorithm presented is a modification and improvement of the structural approach. A two-step process of local feature matching and global feature matching guarantees the correct matching results

    Fingerprint-based biometric recognition allied to fuzzy-neural feature classification.

    Get PDF
    The research investigates fingerprint recognition as one of the most reliable biometrics identification methods. An automatic identification process of humans-based on fingerprints requires the input fingerprint to be matched with a large number of fingerprints in a database. To reduce the search time and computational complexity, it is desirable to classify the database of fingerprints into an accurate and consistent manner so that the input fingerprint is matched only with a subset of the fingerprints in the database. In this regard, the research addressed fingerprint classification. The goal is to improve the accuracy and speed up of existing automatic fingerprint identification algorithms. The investigation is based on analysis of fingerprint characteristics and feature classification using neural network and fuzzy-neural classifiers.The methodology developed, is comprised of image processing, computation of a directional field image, singular-point detection, and feature vector encoding. The statistical distribution of feature vectors was analysed using SPSS. Three types of classifiers, namely, multi-layered perceptrons, radial basis function and fuzzy-neural methods were implemented. The developed classification systems were tested and evaluated on 4,000 fingerprint images on the NIST-4 database. For the five-class problem, classification accuracy of 96.2% for FNN, 96.07% for MLP and 84.54% for RBF was achieved, without any rejection. FNN and MLP classification results are significant in comparison with existing studies, which have been reviewed
    corecore