38,449 research outputs found

    Dynamic feature selection for clustering high dimensional data streams

    Get PDF
    open access articleChange in a data stream can occur at the concept level and at the feature level. Change at the feature level can occur if new, additional features appear in the stream or if the importance and relevance of a feature changes as the stream progresses. This type of change has not received as much attention as concept-level change. Furthermore, a lot of the methods proposed for clustering streams (density-based, graph-based, and grid-based) rely on some form of distance as a similarity metric and this is problematic in high-dimensional data where the curse of dimensionality renders distance measurements and any concept of “density” difficult. To address these two challenges we propose combining them and framing the problem as a feature selection problem, specifically a dynamic feature selection problem. We propose a dynamic feature mask for clustering high dimensional data streams. Redundant features are masked and clustering is performed along unmasked, relevant features. If a feature's perceived importance changes, the mask is updated accordingly; previously unimportant features are unmasked and features which lose relevance become masked. The proposed method is algorithm-independent and can be used with any of the existing density-based clustering algorithms which typically do not have a mechanism for dealing with feature drift and struggle with high-dimensional data. We evaluate the proposed method on four density-based clustering algorithms across four high-dimensional streams; two text streams and two image streams. In each case, the proposed dynamic feature mask improves clustering performance and reduces the processing time required by the underlying algorithm. Furthermore, change at the feature level can be observed and tracked

    Learned versus Hand-Designed Feature Representations for 3d Agglomeration

    Full text link
    For image recognition and labeling tasks, recent results suggest that machine learning methods that rely on manually specified feature representations may be outperformed by methods that automatically derive feature representations based on the data. Yet for problems that involve analysis of 3d objects, such as mesh segmentation, shape retrieval, or neuron fragment agglomeration, there remains a strong reliance on hand-designed feature descriptors. In this paper, we evaluate a large set of hand-designed 3d feature descriptors alongside features learned from the raw data using both end-to-end and unsupervised learning techniques, in the context of agglomeration of 3d neuron fragments. By combining unsupervised learning techniques with a novel dynamic pooling scheme, we show how pure learning-based methods are for the first time competitive with hand-designed 3d shape descriptors. We investigate data augmentation strategies for dramatically increasing the size of the training set, and show how combining both learned and hand-designed features leads to the highest accuracy
    corecore