7 research outputs found

    Robot kinematic structure classification from time series of visual data

    Full text link
    In this paper we present a novel algorithm to solve the robot kinematic structure identification problem. Given a time series of data, typically obtained processing a set of visual observations, the proposed approach identifies the ordered sequence of links associated to the kinematic chain, the joint type interconnecting each couple of consecutive links, and the input signal influencing the relative motion. Compared to the state of the art, the proposed algorithm has reduced computational costs, and is able to identify also the joints' type sequence

    Learning and Acting in Peripersonal Space: Moving, Reaching, and Grasping

    Get PDF
    The young infant explores its body, its sensorimotor system, and the immediately accessible parts of its environment, over the course of a few months creating a model of peripersonal space useful for reaching and grasping objects around it. Drawing on constraints from the empirical literature on infant behavior, we present a preliminary computational model of this learning process, implemented and evaluated on a physical robot. The learning agent explores the relationship between the configuration space of the arm, sensing joint angles through proprioception, and its visual perceptions of the hand and grippers. The resulting knowledge is represented as the peripersonal space (PPS) graph, where nodes represent states of the arm, edges represent safe movements, and paths represent safe trajectories from one pose to another. In our model, the learning process is driven by intrinsic motivation. When repeatedly performing an action, the agent learns the typical result, but also detects unusual outcomes, and is motivated to learn how to make those unusual results reliable. Arm motions typically leave the static background unchanged, but occasionally bump an object, changing its static position. The reach action is learned as a reliable way to bump and move an object in the environment. Similarly, once a reliable reach action is learned, it typically makes a quasi-static change in the environment, moving an object from one static position to another. The unusual outcome is that the object is accidentally grasped (thanks to the innate Palmar reflex), and thereafter moves dynamically with the hand. Learning to make grasps reliable is more complex than for reaches, but we demonstrate significant progress. Our current results are steps toward autonomous sensorimotor learning of motion, reaching, and grasping in peripersonal space, based on unguided exploration and intrinsic motivation.Comment: 35 pages, 13 figure

    Learning and Acting in Peripersonal Space: Moving, Reaching, and Grasping

    Get PDF
    The young infant explores its body, its sensorimotor system, and the immediately accessible parts of its environment, over the course of a few months creating a model of peripersonal space useful for reaching and grasping objects around it. Drawing on constraints from the empirical literature on infant behavior, we present a preliminary computational model of this learning process, implemented and evaluated on a physical robot. The learning agent explores the relationship between the configuration space of the arm, sensing joint angles through proprioception, and its visual perceptions of the hand and grippers. The resulting knowledge is represented as the peripersonal space (PPS) graph, where nodes represent states of the arm, edges represent safe movements, and paths represent safe trajectories from one pose to another. In our model, the learning process is driven by a form of intrinsic motivation. When repeatedly performing an action, the agent learns the typical result, but also detects unusual outcomes, and is motivated to learn how to make those unusual results reliable. Arm motions typically leave the static background unchanged, but occasionally bump an object, changing its static position. The reach action is learned as a reliable way to bump and move a specified object in the environment. Similarly, once a reliable reach action is learned, it typically makes a quasi-static change in the environment, bumping an object from one static position to another. The unusual outcome is that the object is accidentally grasped (thanks to the innate Palmar reflex), and thereafter moves dynamically with the hand. Learning to make grasping reliable is more complex than for reaching, but we demonstrate significant progress. Our current results are steps toward autonomous sensorimotor learning of motion, reaching, and grasping in peripersonal space, based on unguided exploration and intrinsic motivation

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Unsupervised Body Scheme Learning through Self-Perception

    No full text
    Abstract — In this paper, we present an approach allowing a robot to learn a generative model of its own physical body from scratch using self-perception with a single monocular camera. Our approach yields a compact Bayesian network for the robot’s kinematic structure including the forward and inverse models relating action signals and body pose. We propose to simultaneously learn local action models for all pairs of perceivable body parts from data generated through random “motor babbling. ” From this repertoire of local models, we construct a Bayesian network for the full system using the pose prediction accuracy on a separate cross validation data set as the criterion for model selection. The resulting model can be used to predict the body pose when no perception is available and allows for gradient-based posture control. In experiments with real and simulated manipulator arms, we show that our system is able to quickly learn compact and accurate models and to robustly deal with noisy observations. I
    corecore