304 research outputs found

    Unsupervised Word Segmentation and Lexicon Discovery Using Acoustic Word Embeddings

    Get PDF
    In settings where only unlabelled speech data is available, speech technology needs to be developed without transcriptions, pronunciation dictionaries, or language modelling text. A similar problem is faced when modelling infant language acquisition. In these cases, categorical linguistic structure needs to be discovered directly from speech audio. We present a novel unsupervised Bayesian model that segments unlabelled speech and clusters the segments into hypothesized word groupings. The result is a complete unsupervised tokenization of the input speech in terms of discovered word types. In our approach, a potential word segment (of arbitrary length) is embedded in a fixed-dimensional acoustic vector space. The model, implemented as a Gibbs sampler, then builds a whole-word acoustic model in this space while jointly performing segmentation. We report word error rates in a small-vocabulary connected digit recognition task by mapping the unsupervised decoded output to ground truth transcriptions. The model achieves around 20% error rate, outperforming a previous HMM-based system by about 10% absolute. Moreover, in contrast to the baseline, our model does not require a pre-specified vocabulary size.Comment: 11 pages, 8 figures; Accepted to the IEEE/ACM Transactions on Audio, Speech, and Language Processin

    Revisiting speech segmentation and lexicon learning with better features

    Full text link
    We revisit a self-supervised method that segments unlabelled speech into word-like segments. We start from the two-stage duration-penalised dynamic programming method that performs zero-resource segmentation without learning an explicit lexicon. In the first acoustic unit discovery stage, we replace contrastive predictive coding features with HuBERT. After word segmentation in the second stage, we get an acoustic word embedding for each segment by averaging HuBERT features. These embeddings are clustered using K-means to get a lexicon. The result is good full-coverage segmentation with a lexicon that achieves state-of-the-art performance on the ZeroSpeech benchmarks.Comment: 2 page

    The Zero Resource Speech Challenge 2017

    Full text link
    We describe a new challenge aimed at discovering subword and word units from raw speech. This challenge is the followup to the Zero Resource Speech Challenge 2015. It aims at constructing systems that generalize across languages and adapt to new speakers. The design features and evaluation metrics of the challenge are presented and the results of seventeen models are discussed.Comment: IEEE ASRU (Automatic Speech Recognition and Understanding) 2017. Okinawa, Japa
    • …
    corecore