4 research outputs found

    Conditional Random Field Autoencoders for Unsupervised Structured Prediction

    Full text link
    We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines

    Unsupervised Word Alignment with Arbitrary Features

    No full text
    We introduce a discriminatively trained, globally normalized, log-linear variant of the lexical translation models proposed by Brown et al. (1993). In our model, arbitrary, nonindependent features may be freely incorporated, thereby overcoming the inherent limitation of generative models, which require that features be sensitive to the conditional independencies of the generative process. However, unlike previous work on discriminative modeling of word alignment (which also permits the use of arbitrary features), the parameters in our models are learned from unannotated parallel sentences, rather than from supervised word alignments. Using a variety of intrinsic and extrinsic measures, including translation performance, we show our model yields better alignments than generative baselines in a number of language pairs.</p
    corecore