69 research outputs found

    Unsupervised Single Image Deraining with Self-supervised Constraints

    Full text link
    Most existing single image deraining methods require learning supervised models from a large set of paired synthetic training data, which limits their generality, scalability and practicality in real-world multimedia applications. Besides, due to lack of labeled-supervised constraints, directly applying existing unsupervised frameworks to the image deraining task will suffer from low-quality recovery. Therefore, we propose an Unsupervised Deraining Generative Adversarial Network (UD-GAN) to tackle above problems by introducing self-supervised constraints from the intrinsic statistics of unpaired rainy and clean images. Specifically, we firstly design two collaboratively optimized modules, namely Rain Guidance Module (RGM) and Background Guidance Module (BGM), to take full advantage of rainy image characteristics: The RGM is designed to discriminate real rainy images from fake rainy images which are created based on outputs of the generator with BGM. Simultaneously, the BGM exploits a hierarchical Gaussian-Blur gradient error to ensure background consistency between rainy input and de-rained output. Secondly, a novel luminance-adjusting adversarial loss is integrated into the clean image discriminator considering the built-in luminance difference between real clean images and derained images. Comprehensive experiment results on various benchmarking datasets and different training settings show that UD-GAN outperforms existing image deraining methods in both quantitative and qualitative comparisons.Comment: 10 pages, 8 figure

    Detail-recovery Image Deraining via Dual Sample-augmented Contrastive Learning

    Full text link
    The intricacy of rainy image contents often leads cutting-edge deraining models to image degradation including remnant rain, wrongly-removed details, and distorted appearance. Such degradation is further exacerbated when applying the models trained on synthetic data to real-world rainy images. We observe two types of domain gaps between synthetic and real-world rainy images: one exists in rain streak patterns; the other is the pixel-level appearance of rain-free images. To bridge the two domain gaps, we propose a semi-supervised detail-recovery image deraining network (Semi-DRDNet) with dual sample-augmented contrastive learning. Semi-DRDNet consists of three sub-networks:i) for removing rain streaks without remnants, we present a squeeze-and-excitation based rain residual network; ii) for encouraging the lost details to return, we construct a structure detail context aggregation based detail repair network; to our knowledge, this is the first time; and iii) for building efficient contrastive constraints for both rain streaks and clean backgrounds, we exploit a novel dual sample-augmented contrastive regularization network.Semi-DRDNet operates smoothly on both synthetic and real-world rainy data in terms of deraining robustness and detail accuracy. Comparisons on four datasets including our established Real200 show clear improvements of Semi-DRDNet over fifteen state-of-the-art methods. Code and dataset are available at https://github.com/syy-whu/DRD-Net.Comment: 17 page

    RainDiffusion:When Unsupervised Learning Meets Diffusion Models for Real-world Image Deraining

    Full text link
    What will happen when unsupervised learning meets diffusion models for real-world image deraining? To answer it, we propose RainDiffusion, the first unsupervised image deraining paradigm based on diffusion models. Beyond the traditional unsupervised wisdom of image deraining, RainDiffusion introduces stable training of unpaired real-world data instead of weakly adversarial training. RainDiffusion consists of two cooperative branches: Non-diffusive Translation Branch (NTB) and Diffusive Translation Branch (DTB). NTB exploits a cycle-consistent architecture to bypass the difficulty in unpaired training of standard diffusion models by generating initial clean/rainy image pairs. DTB leverages two conditional diffusion modules to progressively refine the desired output with initial image pairs and diffusive generative prior, to obtain a better generalization ability of deraining and rain generation. Rain-Diffusion is a non adversarial training paradigm, serving as a new standard bar for real-world image deraining. Extensive experiments confirm the superiority of our RainDiffusion over un/semi-supervised methods and show its competitive advantages over fully-supervised ones.Comment: 9 page

    Unsupervised Deraining: Where Contrastive Learning Meets Self-similarity

    Full text link
    Image deraining is a typical low-level image restoration task, which aims at decomposing the rainy image into two distinguishable layers: the clean image layer and the rain layer. Most of the existing learning-based deraining methods are supervisedly trained on synthetic rainy-clean pairs. The domain gap between the synthetic and real rains makes them less generalized to different real rainy scenes. Moreover, the existing methods mainly utilize the property of the two layers independently, while few of them have considered the mutually exclusive relationship between the two layers. In this work, we propose a novel non-local contrastive learning (NLCL) method for unsupervised image deraining. Consequently, we not only utilize the intrinsic self-similarity property within samples but also the mutually exclusive property between the two layers, so as to better differ the rain layer from the clean image. Specifically, the non-local self-similarity image layer patches as the positives are pulled together and similar rain layer patches as the negatives are pushed away. Thus the similar positive/negative samples that are close in the original space benefit us to enrich more discriminative representation. Apart from the self-similarity sampling strategy, we analyze how to choose an appropriate feature encoder in NLCL. Extensive experiments on different real rainy datasets demonstrate that the proposed method obtains state-of-the-art performance in real deraining.Comment: 10 pages, 10 figures, accept to 2022CVP

    Unsupervised Deraining: Where Asymmetric Contrastive Learning Meets Self-similarity

    Full text link
    Most of the existing learning-based deraining methods are supervisedly trained on synthetic rainy-clean pairs. The domain gap between the synthetic and real rain makes them less generalized to complex real rainy scenes. Moreover, the existing methods mainly utilize the property of the image or rain layers independently, while few of them have considered their mutually exclusive relationship. To solve above dilemma, we explore the intrinsic intra-similarity within each layer and inter-exclusiveness between two layers and propose an unsupervised non-local contrastive learning (NLCL) deraining method. The non-local self-similarity image patches as the positives are tightly pulled together, rain patches as the negatives are remarkably pushed away, and vice versa. On one hand, the intrinsic self-similarity knowledge within positive/negative samples of each layer benefits us to discover more compact representation; on the other hand, the mutually exclusive property between the two layers enriches the discriminative decomposition. Thus, the internal self-similarity within each layer (similarity) and the external exclusive relationship of the two layers (dissimilarity) serving as a generic image prior jointly facilitate us to unsupervisedly differentiate the rain from clean image. We further discover that the intrinsic dimension of the non-local image patches is generally higher than that of the rain patches. This motivates us to design an asymmetric contrastive loss to precisely model the compactness discrepancy of the two layers for better discriminative decomposition. In addition, considering that the existing real rain datasets are of low quality, either small scale or downloaded from the internet, we collect a real large-scale dataset under various rainy kinds of weather that contains high-resolution rainy images.Comment: 16 pages, 15 figures. arXiv admin note: substantial text overlap with arXiv:2203.1150

    Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing Multiple Degradations in Real-World Images

    Full text link
    Removing multiple degradations, such as haze, rain, and blur, from real-world images poses a challenging and illposed problem. Recently, unified models that can handle different degradations have been proposed and yield promising results. However, these approaches focus on synthetic images and experience a significant performance drop when applied to realworld images. In this paper, we introduce Uni-Removal, a twostage semi-supervised framework for addressing the removal of multiple degradations in real-world images using a unified model and parameters. In the knowledge transfer stage, Uni-Removal leverages a supervised multi-teacher and student architecture in the knowledge transfer stage to facilitate learning from pretrained teacher networks specialized in different degradation types. A multi-grained contrastive loss is introduced to enhance learning from feature and image spaces. In the domain adaptation stage, unsupervised fine-tuning is performed by incorporating an adversarial discriminator on real-world images. The integration of an extended multi-grained contrastive loss and generative adversarial loss enables the adaptation of the student network from synthetic to real-world domains. Extensive experiments on real-world degraded datasets demonstrate the effectiveness of our proposed method. We compare our Uni-Removal framework with state-of-the-art supervised and unsupervised methods, showcasing its promising results in real-world image dehazing, deraining, and deblurring simultaneously

    RCDNet: An Interpretable Rain Convolutional Dictionary Network for Single Image Deraining

    Full text link
    As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability. In specific, we first establish a RCD model for representing rain streaks and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. By unfolding it, we then build the RCDNet in which every network module has clear physical meanings and corresponds to each operation involved in the algorithm. This good interpretability greatly facilitates an easy visualization and analysis on what happens inside the network and why it works well in inference process. Moreover, taking into account the domain gap issue in real scenarios, we further design a novel dynamic RCDNet, where the rain kernels can be dynamically inferred corresponding to input rainy images and then help shrink the space for rain layer estimation with few rain maps so as to ensure a fine generalization performance in the inconsistent scenarios of rain types between training and testing data. By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to better deraining performance. Comprehensive experiments substantiate the superiority of our method, especially on its well generality to diverse testing scenarios and good interpretability for all its modules. Code is available in \emph{\url{https://github.com/hongwang01/DRCDNet}}
    corecore