499 research outputs found

    Real-to-Virtual Domain Unification for End-to-End Autonomous Driving

    Full text link
    In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. More critically, all prior works fail to deal with the notorious domain shift if we were to merge data collected from different sources, which greatly hinders the model generalization ability. In this work, we address the above limitations by taking advantage of virtual data collected from driving simulators, and present DU-drive, an unsupervised real-to-virtual domain unification framework for end-to-end autonomous driving. It first transforms real driving data to its less complex counterpart in the virtual domain and then predicts vehicle control commands from the generated virtual image. Our framework has three unique advantages: 1) it maps driving data collected from a variety of source distributions into a unified domain, effectively eliminating domain shift; 2) the learned virtual representation is simpler than the input real image and closer in form to the "minimum sufficient statistic" for the prediction task, which relieves the burden of the compression phase while optimizing the information bottleneck tradeoff and leads to superior prediction performance; 3) it takes advantage of annotated virtual data which is unlimited and free to obtain. Extensive experiments on two public driving datasets and two driving simulators demonstrate the performance superiority and interpretive capability of DU-drive

    Spatiotemporal Learning of Multivehicle Interaction Patterns in Lane-Change Scenarios

    Full text link
    Interpretation of common-yet-challenging interaction scenarios can benefit well-founded decisions for autonomous vehicles. Previous research achieved this using their prior knowledge of specific scenarios with predefined models, limiting their adaptive capabilities. This paper describes a Bayesian nonparametric approach that leverages continuous (i.e., Gaussian processes) and discrete (i.e., Dirichlet processes) stochastic processes to reveal underlying interaction patterns of the ego vehicle with other nearby vehicles. Our model relaxes dependency on the number of surrounding vehicles by developing an acceleration-sensitive velocity field based on Gaussian processes. The experiment results demonstrate that the velocity field can represent the spatial interactions between the ego vehicle and its surroundings. Then, a discrete Bayesian nonparametric model, integrating Dirichlet processes and hidden Markov models, is developed to learn the interaction patterns over the temporal space by segmenting and clustering the sequential interaction data into interpretable granular patterns automatically. We then evaluate our approach in the highway lane-change scenarios using the highD dataset collected from real-world settings. Results demonstrate that our proposed Bayesian nonparametric approach provides an insight into the complicated lane-change interactions of the ego vehicle with multiple surrounding traffic participants based on the interpretable interaction patterns and their transition properties in temporal relationships. Our proposed approach sheds light on efficiently analyzing other kinds of multi-agent interactions, such as vehicle-pedestrian interactions. View the demos via https://youtu.be/z_vf9UHtdAM.Comment: for the supplements, see https://chengyuan-zhang.github.io/Multivehicle-Interaction

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Legal personality of artificial intelligence under international law

    Get PDF
    To be able to offer a deeper understanding of the topic this work will first examine the concept of legal personality, its meaning and application in the legal framework of international law over the years. Without claiming advanced technological knowledge in scientific areas like robotics and engineering the paper will then try to present some basic overview over the latest developments concerning Artificial Intelligence, such as quantum computing and emotional intelligence. Consequently some suggestions about possibilities of connecting these two topics will be made. The questions introduced will engage with the nature and different forms of legal personhood, its connection to intelligence, autonomy and/or consciousness. This paper aims to create a more practical and not a general, hypothetical idea of how an AI agent could be granted international legal personality and what could be the possible effects of that (for example rights and obligations). For this purpose it will focus on the recognised subjects of international law and examine on their example an AI agent as a possible future actor in international legal relationships. Subject of reference will be international law and recent developments in EU law, such as the European Parliament initiative to regulate Artificial Intelligence as well as some regulations and “visions” of national legislation, for example Estonia and China. Consequently the dangers of granting legal personhood to AI agents will be presented and discussed. The arguments against the creation of a “technical veil” will be examined closely. The work will then refer to possible advantages and positive aspects of an AI’s legal personhood under international law. In the final chapter a conclusion and some recommendation will be made
    corecore