17,804 research outputs found

    Unsupervised Person Re-identification by Deep Learning Tracklet Association

    Full text link
    Mostexistingpersonre-identification(re-id)methods relyon supervised model learning on per-camera-pair manually labelled pairwise training data. This leads to poor scalability in practical re-id deployment due to the lack of exhaustive identity labelling of image positive and negative pairs for every camera pair. In this work, we address this problem by proposing an unsupervised re-id deep learning approach capable of incrementally discovering and exploiting the underlying re-id discriminative information from automatically generated person tracklet data from videos in an end-to-end model optimisation. We formulate a Tracklet Association Unsupervised Deep Learning (TAUDL) framework characterised by jointly learning per-camera (within-camera) tracklet association (labelling) and cross-camera tracklet correlation by maximising the discovery of most likely tracklet relationships across camera views. Extensive experiments demonstrate the superiority of the proposed TAUDL model over the state-of-the-art unsupervised and domain adaptation re- id methods using six person re-id benchmarking datasets.Comment: ECCV 2018 Ora

    Unsupervised Domain Adaptive Re-Identification: Theory and Practice

    Full text link
    We study the problem of unsupervised domain adaptive re-identification (re-ID) which is an active topic in computer vision but lacks a theoretical foundation. We first extend existing unsupervised domain adaptive classification theories to re-ID tasks. Concretely, we introduce some assumptions on the extracted feature space and then derive several loss functions guided by these assumptions. To optimize them, a novel self-training scheme for unsupervised domain adaptive re-ID tasks is proposed. It iteratively makes guesses for unlabeled target data based on an encoder and trains the encoder based on the guessed labels. Extensive experiments on unsupervised domain adaptive person re-ID and vehicle re-ID tasks with comparisons to the state-of-the-arts confirm the effectiveness of the proposed theories and self-training framework. Our code is available at \url{https://github.com/LcDog/DomainAdaptiveReID}

    Weakly Supervised Person Re-Identification

    Full text link
    In the conventional person re-id setting, it is assumed that the labeled images are the person images within the bounding box for each individual; this labeling across multiple nonoverlapping camera views from raw video surveillance is costly and time-consuming. To overcome this difficulty, we consider weakly supervised person re-id modeling. The weak setting refers to matching a target person with an untrimmed gallery video where we only know that the identity appears in the video without the requirement of annotating the identity in any frame of the video during the training procedure. Hence, for a video, there could be multiple video-level labels. We cast this weakly supervised person re-id challenge into a multi-instance multi-label learning (MIML) problem. In particular, we develop a Cross-View MIML (CV-MIML) method that is able to explore potential intraclass person images from all the camera views by incorporating the intra-bag alignment and the cross-view bag alignment. Finally, the CV-MIML method is embedded into an existing deep neural network for developing the Deep Cross-View MIML (Deep CV-MIML) model. We have performed extensive experiments to show the feasibility of the proposed weakly supervised setting and verify the effectiveness of our method compared to related methods on four weakly labeled datasets.Comment: to appear at CVPR1

    Transfer Metric Learning: Algorithms, Applications and Outlooks

    Full text link
    Distance metric learning (DML) aims to find an appropriate way to reveal the underlying data relationship. It is critical in many machine learning, pattern recognition and data mining algorithms, and usually require large amount of label information (such as class labels or pair/triplet constraints) to achieve satisfactory performance. However, the label information may be insufficient in real-world applications due to the high-labeling cost, and DML may fail in this case. Transfer metric learning (TML) is able to mitigate this issue for DML in the domain of interest (target domain) by leveraging knowledge/information from other related domains (source domains). Although achieved a certain level of development, TML has limited success in various aspects such as selective transfer, theoretical understanding, handling complex data, big data and extreme cases. In this survey, we present a systematic review of the TML literature. In particular, we group TML into different categories according to different settings and metric transfer strategies, such as direct metric approximation, subspace approximation, distance approximation, and distribution approximation. A summarization and insightful discussion of the various TML approaches and their applications will be presented. Finally, we indicate some challenges and provide possible future directions.Comment: 14 pages, 5 figure

    Adaptation and Re-Identification Network: An Unsupervised Deep Transfer Learning Approach to Person Re-Identification

    Full text link
    Person re-identification (Re-ID) aims at recognizing the same person from images taken across different cameras. To address this task, one typically requires a large amount labeled data for training an effective Re-ID model, which might not be practical for real-world applications. To alleviate this limitation, we choose to exploit a sufficient amount of pre-existing labeled data from a different (auxiliary) dataset. By jointly considering such an auxiliary dataset and the dataset of interest (but without label information), our proposed adaptation and re-identification network (ARN) performs unsupervised domain adaptation, which leverages information across datasets and derives domain-invariant features for Re-ID purposes. In our experiments, we verify that our network performs favorably against state-of-the-art unsupervised Re-ID approaches, and even outperforms a number of baseline Re-ID methods which require fully supervised data for training.Comment: 7 pages, 3 figures. CVPR 2018 workshop pape

    Domain Adaptive Person Re-Identification via Camera Style Generation and Label Propagation

    Full text link
    Unsupervised domain adaptation in person re-identification resorts to labeled source data to promote the model training on target domain, facing the dilemmas caused by large domain shift and large camera variations. The non-overlapping labels challenge that source domain and target domain have entirely different persons further increases the re-identification difficulty. In this paper, we propose a novel algorithm to narrow such domain gaps. We derive a camera style adaptation framework to learn the style-based mappings between different camera views, from the target domain to the source domain, and then we can transfer the identity-based distribution from the source domain to the target domain on the camera level. To overcome the non-overlapping labels challenge and guide the person re-identification model to narrow the gap further, an efficient and effective soft-labeling method is proposed to mine the intrinsic local structure of the target domain through building the connection between GAN-translated source domain and the target domain. Experiment results conducted on real benchmark datasets indicate that our method gets state-of-the-art results

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    Imitating Targets from all sides: An Unsupervised Transfer Learning method for Person Re-identification

    Full text link
    Person re-identification (Re-ID) models usually show a limited performance when they are trained on one dataset and tested on another dataset due to the inter-dataset bias (e.g. completely different identities and backgrounds) and the intra-dataset difference (e.g. camera invariance). In terms of this issue, given a labelled source training set and an unlabelled target training set, we propose an unsupervised transfer learning method characterized by 1) bridging inter-dataset bias and intra-dataset difference via a proposed ImitateModel simultaneously; 2) regarding the unsupervised person Re-ID problem as a semi-supervised learning problem formulated by a dual classification loss to learn a discriminative representation across domains; 3) exploiting the underlying commonality across different domains from the class-style space to improve the generalization ability of re-ID models. Extensive experiments are conducted on two widely employed benchmarks, including Market-1501 and DukeMTMC-reID, and experimental results demonstrate that the proposed method can achieve a competitive performance against other state-of-the-art unsupervised Re-ID approaches

    Learning to Align Multi-Camera Domains using Part-Aware Clustering for Unsupervised Video Person Re-Identification

    Full text link
    Most video person re-identification (re-ID) methods are mainly based on supervised learning, which requires cross-camera ID labeling. Since the cost of labeling increases dramatically as the number of cameras increases, it is difficult to apply the re-identification algorithm to a large camera network. In this paper, we address the scalability issue by presenting deep representation learning without ID information across multiple cameras. Technically, we train neural networks to generate both ID-discriminative and camera-invariant features. To achieve the ID discrimination ability of the embedding features, we maximize feature distances between different person IDs within a camera by using a metric learning approach. At the same time, considering each camera as a different domain, we apply adversarial learning across multiple camera domains for generating camera-invariant features. We also propose a part-aware adaptation module, which effectively performs multi-camera domain invariant feature learning in different spatial regions. We carry out comprehensive experiments on three public re-ID datasets (i.e., PRID-2011, iLIDS-VID, and MARS). Our method outperforms state-of-the-art methods by a large margin of about 20\% in terms of rank-1 accuracy on the large-scale MARS dataset

    Frustratingly Easy Person Re-Identification: Generalizing Person Re-ID in Practice

    Full text link
    Contemporary person re-identification (\reid) methods usually require access to data from the deployment camera network during training in order to perform well. This is because contemporary \reid{} models trained on one dataset do not generalise to other camera networks due to the domain-shift between datasets. This requirement is often the bottleneck for deploying \reid{} systems in practical security or commercial applications, as it may be impossible to collect this data in advance or prohibitively costly to annotate it. This paper alleviates this issue by proposing a simple baseline for domain generalizable~(DG) person re-identification. That is, to learn a \reid{} model from a set of source domains that is suitable for application to unseen datasets out-of-the-box, without any model updating. Specifically, we observe that the domain discrepancy in \reid{} is due to style and content variance across datasets and demonstrate appropriate Instance and Feature Normalization alleviates much of the resulting domain-shift in Deep \reid{} models. Instance Normalization~(IN) in early layers filters out style statistic variations and Feature Normalization~(FN) in deep layers is able to further eliminate disparity in content statistics. Compared to contemporary alternatives, this approach is extremely simple to implement, while being faster to train and test, thus making it an extremely valuable baseline for implementing \reid{} in practice. With a few lines of code, it increases the rank 1 \reid{} accuracy by {11.8\%, 33.2\%, 12.8\% and 8.5\%} on the VIPeR, PRID, GRID, and i-LIDS benchmarks respectively. Source codes are available at \url{https://github.com/BJTUJia/person_reID_DualNorm}.Comment: 14 pages,2 figure
    • …
    corecore