48 research outputs found

    Unsupervised Person Re-identification by Deep Learning Tracklet Association

    Get PDF
    © 2018, Springer Nature Switzerland AG. Most existing person re-identification (re-id) methods rely on supervised model learning on per-camera-pair manually labelled pairwise training data. This leads to poor scalability in practical re-id deployment due to the lack of exhaustive identity labelling of image positive and negative pairs for every camera pair. In this work, we address this problem by proposing an unsupervised re-id deep learning approach capable of incrementally discovering and exploiting the underlying re-id discriminative information from automatically generated person tracklet data from videos in an end-to-end model optimisation. We formulate a Tracklet Association Unsupervised Deep Learning (TAUDL) framework characterised by jointly learning per-camera (within-camera) tracklet association (labelling) and cross-camera tracklet correlation by maximising the discovery of most likely tracklet relationships across camera views. Extensive experiments demonstrate the superiority of the proposed TAUDL model over the state-of-the-art unsupervised and domain adaptation re-id methods using six person re-id benchmarking datasets

    Temporal Continuity Based Unsupervised Learning for Person Re-Identification

    Full text link
    Person re-identification (re-id) aims to match the same person from images taken across multiple cameras. Most existing person re-id methods generally require a large amount of identity labeled data to act as discriminative guideline for representation learning. Difficulty in manually collecting identity labeled data leads to poor adaptability in practical scenarios. To overcome this problem, we propose an unsupervised center-based clustering approach capable of progressively learning and exploiting the underlying re-id discriminative information from temporal continuity within a camera. We call our framework Temporal Continuity based Unsupervised Learning (TCUL). Specifically, TCUL simultaneously does center based clustering of unlabeled (target) dataset and fine-tunes a convolutional neural network (CNN) pre-trained on irrelevant labeled (source) dataset to enhance discriminative capability of the CNN for the target dataset. Furthermore, it exploits temporally continuous nature of images within-camera jointly with spatial similarity of feature maps across-cameras to generate reliable pseudo-labels for training a re-identification model. As the training progresses, number of reliable samples keep on growing adaptively which in turn boosts representation ability of the CNN. Extensive experiments on three large-scale person re-id benchmark datasets are conducted to compare our framework with state-of-the-art techniques, which demonstrate superiority of TCUL over existing methods

    Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

    Get PDF
    For person re-identification, existing deep networks often focus on representation learning. However, without transfer learning, the learned model is fixed as is, which is not adaptable for handling various unseen scenarios. In this paper, beyond representation learning, we consider how to formulate person image matching directly in deep feature maps. We treat image matching as finding local correspondences in feature maps, and construct query-adaptive convolution kernels on the fly to achieve local matching. In this way, the matching process and results are interpretable, and this explicit matching is more generalizable than representation features to unseen scenarios, such as unknown misalignments, pose or viewpoint changes. To facilitate end-to-end training of this architecture, we further build a class memory module to cache feature maps of the most recent samples of each class, so as to compute image matching losses for metric learning. Through direct cross-dataset evaluation, the proposed Query-Adaptive Convolution (QAConv) method gains large improvements over popular learning methods (about 10%+ mAP), and achieves comparable results to many transfer learning methods. Besides, a model-free temporal cooccurrence based score weighting method called TLift is proposed, which improves the performance to a further extent, achieving state-of-the-art results in cross-dataset person re-identification. Code is available at https://github.com/ShengcaiLiao/QAConv.Comment: This is the ECCV 2020 version, including the appendi
    corecore