28,740 research outputs found

    The SP theory of intelligence: benefits and applications

    Full text link
    This article describes existing and expected benefits of the "SP theory of intelligence", and some potential applications. The theory aims to simplify and integrate ideas across artificial intelligence, mainstream computing, and human perception and cognition, with information compression as a unifying theme. It combines conceptual simplicity with descriptive and explanatory power across several areas of computing and cognition. In the "SP machine" -- an expression of the SP theory which is currently realized in the form of a computer model -- there is potential for an overall simplification of computing systems, including software. The SP theory promises deeper insights and better solutions in several areas of application including, most notably, unsupervised learning, natural language processing, autonomous robots, computer vision, intelligent databases, software engineering, information compression, medical diagnosis and big data. There is also potential in areas such as the semantic web, bioinformatics, structuring of documents, the detection of computer viruses, data fusion, new kinds of computer, and the development of scientific theories. The theory promises seamless integration of structures and functions within and between different areas of application. The potential value, worldwide, of these benefits and applications is at least $190 billion each year. Further development would be facilitated by the creation of a high-parallel, open-source version of the SP machine, available to researchers everywhere.Comment: arXiv admin note: substantial text overlap with arXiv:1212.022

    A Deep Neural Network for Finger Counting and Numerosity Estimation

    Get PDF
    In this paper, we present neuro-robotics models with a deep artificial neural network capable of generating finger counting positions and number estimation. We first train the model in an unsupervised manner where each layer is treated as a Restricted Boltzmann Machine or an autoencoder. Such a model is further trained in a supervised way. This type of pretraining is tested on our baseline model and two methods of pre-training are compared. The network is extended to produce finger counting positions. The performance in number estimation of such an extended model is evaluated. We test the hypothesis if the subitizing process can be obtained by one single model used also for estimation of higher numerosities. The results confirm the importance of unsupervised training in our enumeration task and show some similarities to human behaviour in the case of subitizing

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Big data and the SP theory of intelligence

    Get PDF
    This article is about how the "SP theory of intelligence" and its realisation in the "SP machine" may, with advantage, be applied to the management and analysis of big data. The SP system -- introduced in the article and fully described elsewhere -- may help to overcome the problem of variety in big data: it has potential as "a universal framework for the representation and processing of diverse kinds of knowledge" (UFK), helping to reduce the diversity of formalisms and formats for knowledge and the different ways in which they are processed. It has strengths in the unsupervised learning or discovery of structure in data, in pattern recognition, in the parsing and production of natural language, in several kinds of reasoning, and more. It lends itself to the analysis of streaming data, helping to overcome the problem of velocity in big data. Central in the workings of the system is lossless compression of information: making big data smaller and reducing problems of storage and management. There is potential for substantial economies in the transmission of data, for big cuts in the use of energy in computing, for faster processing, and for smaller and lighter computers. The system provides a handle on the problem of veracity in big data, with potential to assist in the management of errors and uncertainties in data. It lends itself to the visualisation of knowledge structures and inferential processes. A high-parallel, open-source version of the SP machine would provide a means for researchers everywhere to explore what can be done with the system and to create new versions of it.Comment: Accepted for publication in IEEE Acces

    Predicting Category Intuitiveness With the Rational Model, the Simplicity Model, and the Generalized Context Model

    Get PDF
    Naïve observers typically perceive some groupings for a set of stimuli as more intuitive than others. The problem of predicting category intuitiveness has been historically considered the remit of models of unsupervised categorization. In contrast, this article develops a measure of category intuitiveness from one of the most widely supported models of supervised categorization, the generalized context model (GCM). Considering different category assignments for a set of instances, the authors asked how well the GCM can predict the classification of each instance on the basis of all the other instances. The category assignment that results in the smallest prediction error is interpreted as the most intuitive for the GCM—the authors refer to this way of applying the GCM as “unsupervised GCM.” The authors systematically compared predictions of category intuitiveness from the unsupervised GCM and two models of unsupervised categorization: the simplicity model and the rational model. The unsupervised GCM compared favorably with the simplicity model and the rational model. This success of the unsupervised GCM illustrates that the distinction between supervised and unsupervised categorization may need to be reconsidered. However, no model emerged as clearly superior, indicating that there is more work to be done in understanding and modeling category intuitiveness
    corecore