2,049 research outputs found

    Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency

    Full text link
    In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment term to regularize predictions in the target domain. The resulting loss function can be effectively optimized via alternating minimization. We demonstrate the effectiveness of our approach on real datasets and present experimental results showing that our approach is superior to state-of-the-art general-purpose domain adaptation techniques.Comment: ECCV 201

    Dynamic Adaptation on Non-Stationary Visual Domains

    Full text link
    Domain adaptation aims to learn models on a supervised source domain that perform well on an unsupervised target. Prior work has examined domain adaptation in the context of stationary domain shifts, i.e. static data sets. However, with large-scale or dynamic data sources, data from a defined domain is not usually available all at once. For instance, in a streaming data scenario, dataset statistics effectively become a function of time. We introduce a framework for adaptation over non-stationary distribution shifts applicable to large-scale and streaming data scenarios. The model is adapted sequentially over incoming unsupervised streaming data batches. This enables improvements over several batches without the need for any additionally annotated data. To demonstrate the effectiveness of our proposed framework, we modify associative domain adaptation to work well on source and target data batches with unequal class distributions. We apply our method to several adaptation benchmark datasets for classification and show improved classifier accuracy not only for the currently adapted batch, but also when applied on future stream batches. Furthermore, we show the applicability of our associative learning modifications to semantic segmentation, where we achieve competitive results

    Spectral Unsupervised Domain Adaptation for Visual Recognition

    Full text link
    Unsupervised domain adaptation (UDA) aims to learn a well-performed model in an unlabeled target domain by leveraging labeled data from one or multiple related source domains. It remains a great challenge due to 1) the lack of annotations in the target domain and 2) the rich discrepancy between the distributions of source and target data. We propose Spectral UDA (SUDA), an efficient yet effective UDA technique that works in the spectral space and is generic across different visual recognition tasks in detection, classification and segmentation. SUDA addresses UDA challenges from two perspectives. First, it mitigates inter-domain discrepancies by a spectrum transformer (ST) that maps source and target images into spectral space and learns to enhance domain-invariant spectra while suppressing domain-variant spectra simultaneously. To this end, we design novel adversarial multi-head spectrum attention that leverages contextual information to identify domain-variant and domain-invariant spectra effectively. Second, it mitigates the lack of annotations in target domain by introducing multi-view spectral learning which aims to learn comprehensive yet confident target representations by maximizing the mutual information among multiple ST augmentations capturing different spectral views of each target sample. Extensive experiments over different visual tasks (e.g., detection, classification and segmentation) show that SUDA achieves superior accuracy and it is also complementary with state-of-the-art UDA methods with consistent performance boosts but little extra computation
    • …
    corecore