4,648 research outputs found

    Unsupervised Transductive Domain Adaptation

    Full text link
    Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address the domain shift problem. In this paper, we approach the problem from a transductive perspective. We incorporate the domain shift and the transductive target inference into our framework by jointly solving for an asymmetric similarity metric and the optimal transductive target label assignment. We also show that our model can easily be extended for deep feature learning in order to learn features which are discriminative in the target domain. Our experiments show that the proposed method significantly outperforms state-of-the-art algorithms in both object recognition and digit classification experiments by a large margin

    Domain Adaptation in Highly Imbalanced and Overlapping Datasets

    Full text link
    In many machine learning domains, datasets are characterized by highly imbalanced and overlapping classes. Particularly in the medical domain, a specific list of symptoms can be labeled as one of various different conditions. Some of these conditions may be more prevalent than others by several orders of magnitude. Here we present a novel unsupervised domain adaptation scheme for such datasets. The scheme, based on a specific type of Quantification, is designed to work under both label and conditional shifts. It is demonstrated on datasets generated from electronic health records and provides high quality results for both Quantification and Domain Adaptation in very challenging scenarios. Potential benefits of using this scheme in the current COVID-19 outbreak, for estimation of prevalence and probability of infection are discussed.Comment: 16 pages, 4 figure

    On the achievability of blind source separation for high-dimensional nonlinear source mixtures

    Full text link
    For many years, a combination of principal component analysis (PCA) and independent component analysis (ICA) has been used for blind source separation (BSS). However, it remains unclear why these linear methods work well with real-world data that involve nonlinear source mixtures. This work theoretically validates that a cascade of linear PCA and ICA can solve a nonlinear BSS problem accurately---when the sensory inputs are generated from hidden sources via the nonlinear mapping with sufficient dimensionality. Our proposed theorem, termed the asymptotic linearization theorem, theoretically guarantees that applying linear PCA to the inputs can reliably extract a subspace spanned by the linear projections from every hidden source as the major components---and thus projecting the inputs onto their major eigenspace can effectively recover a linear transformation of the hidden sources. Then, subsequent application of linear ICA can separate all the true independent hidden sources accurately. Zero-element-wise-error nonlinear BSS is asymptotically attained when the source dimensionality is large and the input dimensionality is larger than the source dimensionality. Our proposed theorem is validated analytically and numerically. Moreover, the same computation can be performed by using Hebbian-like plasticity rules, implying the biological plausibility of this nonlinear BSS strategy. Our results highlight the utility of linear PCA and ICA for accurately and reliably recovering nonlinearly mixed sources---and further suggest the importance of employing sensors with sufficient dimensionality to identify true hidden sources of real-world data

    Spectral-graph Based Classifications: Linear Regression for Classification and Normalized Radial Basis Function Network

    Full text link
    Spectral graph theory has been widely applied in unsupervised and semi-supervised learning. In this paper, we find for the first time, to our knowledge, that it also plays a concrete role in supervised classification. It turns out that two classifiers are inherently related to the theory: linear regression for classification (LRC) and normalized radial basis function network (nRBFN), corresponding to linear and nonlinear kernel respectively. The spectral graph theory provides us with a new insight into a fundamental aspect of classification: the tradeoff between fitting error and overfitting risk. With the theory, ideal working conditions for LRC and nRBFN are presented, which ensure not only zero fitting error but also low overfitting risk. For quantitative analysis, two concepts, the fitting error and the spectral risk (indicating overfitting), have been defined. Their bounds for nRBFN and LRC are derived. A special result shows that the spectral risk of nRBFN is lower bounded by the number of classes and upper bounded by the size of radial basis. When the conditions are not met exactly, the classifiers will pursue the minimum fitting error, running into the risk of overfitting. It turns out that â„“2\ell_2-norm regularization can be applied to control overfitting. Its effect is explored under the spectral context. It is found that the two terms in the â„“2\ell_2-regularized objective are one-one correspondent to the fitting error and the spectral risk, revealing a tradeoff between the two quantities. Concerning practical performance, we devise a basis selection strategy to address the main problem hindering the applications of (n)RBFN. With the strategy, nRBFN is easy to implement yet flexible. Experiments on 14 benchmark data sets show the performance of nRBFN is comparable to that of SVM, whereas the parameter tuning of nRBFN is much easier, leading to reduction of model selection time

    Quantifying Mental Health from Social Media with Neural User Embeddings

    Full text link
    Mental illnesses adversely affect a significant proportion of the population worldwide. However, the methods traditionally used for estimating and characterizing the prevalence of mental health conditions are time-consuming and expensive. Consequently, best-available estimates concerning the prevalence of mental health conditions are often years out of date. Automated approaches to supplement these survey methods with broad, aggregated information derived from social media content provides a potential means for near real-time estimates at scale. These may, in turn, provide grist for supporting, evaluating and iteratively improving upon public health programs and interventions. We propose a novel model for automated mental health status quantification that incorporates user embeddings. This builds upon recent work exploring representation learning methods that induce embeddings by leveraging social media post histories. Such embeddings capture latent characteristics of individuals (e.g., political leanings) and encode a soft notion of homophily. In this paper, we investigate whether user embeddings learned from twitter post histories encode information that correlates with mental health statuses. To this end, we estimated user embeddings for a set of users known to be affected by depression and post-traumatic stress disorder (PTSD), and for a set of demographically matched `control' users. We then evaluated these embeddings with respect to: (i) their ability to capture homophilic relations with respect to mental health status; and (ii) the performance of downstream mental health prediction models based on these features. Our experimental results demonstrate that the user embeddings capture similarities between users with respect to mental conditions, and are predictive of mental health

    Learning for Multi-Model and Multi-Type Fitting

    Full text link
    Multi-model fitting has been extensively studied from the random sampling and clustering perspectives. Most assume that only a single type/class of model is present and their generalizations to fitting multiple types of models/structures simultaneously are non-trivial. The inherent challenges include choice of types and numbers of models, sampling imbalance and parameter tuning, all of which render conventional approaches ineffective. In this work, we formulate the multi-model multi-type fitting problem as one of learning deep feature embedding that is clustering-friendly. In other words, points of the same clusters are embedded closer together through the network. For inference, we apply K-means to cluster the data in the embedded feature space and model selection is enabled by analyzing the K-means residuals. Experiments are carried out on both synthetic and real world multi-type fitting datasets, producing state-of-the-art results. Comparisons are also made on single-type multi-model fitting tasks with promising results as well

    Towards a theory of machine learning

    Full text link
    We define a neural network as a septuple consisting of (1) a state vector, (2) an input projection, (3) an output projection, (4) a weight matrix, (5) a bias vector, (6) an activation map and (7) a loss function. We argue that the loss function can be imposed either on the boundary (i.e. input and/or output neurons) or in the bulk (i.e. hidden neurons) for both supervised and unsupervised systems. We apply the principle of maximum entropy to derive a canonical ensemble of the state vectors subject to a constraint imposed on the bulk loss function by a Lagrange multiplier (or an inverse temperature parameter). We show that in an equilibrium the canonical partition function must be a product of two factors: a function of the temperature and a function of the bias vector and weight matrix. Consequently, the total Shannon entropy consists of two terms which represent respectively a thermodynamic entropy and a complexity of the neural network. We derive the first and second laws of learning: during learning the total entropy must decrease until the system reaches an equilibrium (i.e. the second law), and the increment in the loss function must be proportional to the increment in the thermodynamic entropy plus the increment in the complexity (i.e. the first law). We calculate the entropy destruction to show that the efficiency of learning is given by the Laplacian of the total free energy which is to be maximized in an optimal neural architecture, and explain why the optimization condition is better satisfied in a deep network with a large number of hidden layers. The key properties of the model are verified numerically by training a supervised feedforward neural network using the method of stochastic gradient descent. We also discuss a possibility that the entire universe on its most fundamental level is a neural network.Comment: 32 pages, 6 figures, accepted for publication in Machine Learning: Science and Technolog

    A Plug&Play P300 BCI Using Information Geometry

    Full text link
    This paper presents a new classification methods for Event Related Potentials (ERP) based on an Information geometry framework. Through a new estimation of covariance matrices, this work extend the use of Riemannian geometry, which was previously limited to SMR-based BCI, to the problem of classification of ERPs. As compared to the state-of-the-art, this new method increases performance, reduces the number of data needed for the calibration and features good generalisation across sessions and subjects. This method is illustrated on data recorded with the P300-based game brain invaders. Finally, an online and adaptive implementation is described, where the BCI is initialized with generic parameters derived from a database and continuously adapt to the individual, allowing the user to play the game without any calibration while keeping a high accuracy

    Robust Multiple Manifolds Structure Learning

    Full text link
    We present a robust multiple manifolds structure learning (RMMSL) scheme to robustly estimate data structures under the multiple low intrinsic dimensional manifolds assumption. In the local learning stage, RMMSL efficiently estimates local tangent space by weighted low-rank matrix factorization. In the global learning stage, we propose a robust manifold clustering method based on local structure learning results. The proposed clustering method is designed to get the flattest manifolds clusters by introducing a novel curved-level similarity function. Our approach is evaluated and compared to state-of-the-art methods on synthetic data, handwritten digit images, human motion capture data and motorbike videos. We demonstrate the effectiveness of the proposed approach, which yields higher clustering accuracy, and produces promising results for challenging tasks of human motion segmentation and motion flow learning from videos.Comment: ICML201

    Subspace Network: Deep Multi-Task Censored Regression for Modeling Neurodegenerative Diseases

    Full text link
    Over the past decade a wide spectrum of machine learning models have been developed to model the neurodegenerative diseases, associating biomarkers, especially non-intrusive neuroimaging markers, with key clinical scores measuring the cognitive status of patients. Multi-task learning (MTL) has been commonly utilized by these studies to address high dimensionality and small cohort size challenges. However, most existing MTL approaches are based on linear models and suffer from two major limitations: 1) they cannot explicitly consider upper/lower bounds in these clinical scores; 2) they lack the capability to capture complicated non-linear interactions among the variables. In this paper, we propose Subspace Network, an efficient deep modeling approach for non-linear multi-task censored regression. Each layer of the subspace network performs a multi-task censored regression to improve upon the predictions from the last layer via sketching a low-dimensional subspace to perform knowledge transfer among learning tasks. Under mild assumptions, for each layer the parametric subspace can be recovered using only one pass of training data. Empirical results demonstrate that the proposed subspace network quickly picks up the correct parameter subspaces, and outperforms state-of-the-arts in predicting neurodegenerative clinical scores using information in brain imaging
    • …
    corecore