204 research outputs found

    Unsupervised Adversarial Depth Estimation using Cycled Generative Networks

    Full text link
    While recent deep monocular depth estimation approaches based on supervised regression have achieved remarkable performance, costly ground truth annotations are required during training. To cope with this issue, in this paper we present a novel unsupervised deep learning approach for predicting depth maps and show that the depth estimation task can be effectively tackled within an adversarial learning framework. Specifically, we propose a deep generative network that learns to predict the correspondence field i.e. the disparity map between two image views in a calibrated stereo camera setting. The proposed architecture consists of two generative sub-networks jointly trained with adversarial learning for reconstructing the disparity map and organized in a cycle such as to provide mutual constraints and supervision to each other. Extensive experiments on the publicly available datasets KITTI and Cityscapes demonstrate the effectiveness of the proposed model and competitive results with state of the art methods. The code and trained model are available on https://github.com/andrea-pilzer/unsup-stereo-depthGAN.Comment: To appear in 3DV 2018. Code is available on GitHu

    DeepSLAM: A Robust Monocular SLAM System with Unsupervised Deep Learning

    Get PDF
    In this paper, we propose DeepSLAM, a novel unsupervised deep learning-based visual Simultaneous Localization and Mapping (SLAM) system. The DeepSLAM training is fully unsupervised since it only requires stereo imagery instead of annotating ground-truth poses. Its testing takes a monocular image sequence as the input. Therefore, it is a monocular SLAM paradigm. DeepSLAM consists of several essential components, including Mapping-Net, Tracking-Net, Loop-Net and a graph optimization unit. Specifically, the Mapping-Net is an encoder and decoder architecture for describing the 3D structure of the environment while the Tracking-Net is a Recurrent Convolutional Neural Network (RCNN) architecture for capturing the camera motion. The Loop-Net is a pre-trained binary classifier for detecting loop closures. DeepSLAM can simultaneously generate pose estimate, depth map and outlier rejection mask. We evaluate its performance on various datasets, and find that DeepSLAM achieves good performance in terms of pose estimation accuracy, and is robust in some challenging scenes
    • …
    corecore