3 research outputs found

    Unsupervised Learning of Depth, Optical Flow and Pose with Occlusion from 3D Geometry

    Full text link
    In autonomous driving, monocular sequences contain lots of information. Monocular depth estimation, camera ego-motion estimation and optical flow estimation in consecutive frames are high-profile concerns recently. By analyzing tasks above, pixels in the middle frame are modeled into three parts: the rigid region, the non-rigid region, and the occluded region. In joint unsupervised training of depth and pose, we can segment the occluded region explicitly. The occlusion information is used in unsupervised learning of depth, pose and optical flow, as the image reconstructed by depth-pose and optical flow will be invalid in occluded regions. A less-than-mean mask is designed to further exclude the mismatched pixels interfered with by motion or illumination change in the training of depth and pose networks. This method is also used to exclude some trivial mismatched pixels in the training of the optical flow network. Maximum normalization is proposed for depth smoothness term to restrain depth degradation in textureless regions. In the occluded region, as depth and camera motion can provide more reliable motion estimation, they can be used to instruct unsupervised learning of optical flow. Our experiments in KITTI dataset demonstrate that the model based on three regions, full and explicit segmentation of the occlusion region, the rigid region, and the non-rigid region with corresponding unsupervised losses can improve performance on three tasks significantly. The source code is available at: https://github.com/guangmingw/DOPlearning.Comment: Published in: IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2020.301041

    NccFlow: Unsupervised Learning of Optical Flow With Non-occlusion from Geometry

    Full text link
    Optical flow estimation is a fundamental problem of computer vision and has many applications in the fields of robot learning and autonomous driving. This paper reveals novel geometric laws of optical flow based on the insight and detailed definition of non-occlusion. Then, two novel loss functions are proposed for the unsupervised learning of optical flow based on the geometric laws of non-occlusion. Specifically, after the occlusion part of the images are masked, the flowing process of pixels is carefully considered and geometric constraints are conducted based on the geometric laws of optical flow. First, neighboring pixels in the first frame will not intersect during the pixel displacement to the second frame. Secondly, when the cluster containing adjacent four pixels in the first frame moves to the second frame, no other pixels will flow into the quadrilateral formed by them. According to the two geometrical constraints, the optical flow non-intersection loss and the optical flow non-blocking loss in the non-occlusion regions are proposed. Two loss functions punish the irregular and inexact optical flows in the non-occlusion regions. The experiments on datasets demonstrated that the proposed unsupervised losses of optical flow based on the geometric laws in non-occlusion regions make the estimated optical flow more refined in detail, and improve the performance of unsupervised learning of optical flow. In addition, the experiments training on synthetic data and evaluating on real data show that the generalization ability of optical flow network is improved by our proposed unsupervised approach.Comment: 10 pages, 7 figures, under revie

    Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies

    Full text link
    Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories
    corecore