4,989 research outputs found

    Unsupervised Video Understanding by Reconciliation of Posture Similarities

    Full text link
    Understanding human activity and being able to explain it in detail surpasses mere action classification by far in both complexity and value. The challenge is thus to describe an activity on the basis of its most fundamental constituents, the individual postures and their distinctive transitions. Supervised learning of such a fine-grained representation based on elementary poses is very tedious and does not scale. Therefore, we propose a completely unsupervised deep learning procedure based solely on video sequences, which starts from scratch without requiring pre-trained networks, predefined body models, or keypoints. A combinatorial sequence matching algorithm proposes relations between frames from subsets of the training data, while a CNN is reconciling the transitivity conflicts of the different subsets to learn a single concerted pose embedding despite changes in appearance across sequences. Without any manual annotation, the model learns a structured representation of postures and their temporal development. The model not only enables retrieval of similar postures but also temporal super-resolution. Additionally, based on a recurrent formulation, next frames can be synthesized.Comment: Accepted by ICCV 201

    Colorization as a Proxy Task for Visual Understanding

    Full text link
    We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for utilizing unlabeled data than other, traditional unsupervised learning methods. We build on this success and evaluate the ability of our self-supervised network in several contexts. On VOC segmentation and classification tasks, we present results that are state-of-the-art among methods not using ImageNet labels for pretraining representations. Moreover, we present the first in-depth analysis of self-supervision via colorization, concluding that formulation of the loss, training details and network architecture play important roles in its effectiveness. This investigation is further expanded by revisiting the ImageNet pretraining paradigm, asking questions such as: How much training data is needed? How many labels are needed? How much do features change when fine-tuned? We relate these questions back to self-supervision by showing that colorization provides a similarly powerful supervisory signal as various flavors of ImageNet pretraining.Comment: CVPR 2017 (Project page: http://people.cs.uchicago.edu/~larsson/color-proxy/
    • …
    corecore