3,680 research outputs found

    Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy

    Get PDF
    In recent years, endomicroscopy has become increasingly used for diagnostic purposes and interventional guidance. It can provide intraoperative aids for real-time tissue characterization and can help to perform visual investigations aimed for example to discover epithelial cancers. Due to physical constraints on the acquisition process, endomicroscopy images, still today have a low number of informative pixels which hampers their quality. Post-processing techniques, such as Super-Resolution (SR), are a potential solution to increase the quality of these images. SR techniques are often supervised, requiring aligned pairs of low-resolution (LR) and high-resolution (HR) images patches to train a model. However, in our domain, the lack of HR images hinders the collection of such pairs and makes supervised training unsuitable. For this reason, we propose an unsupervised SR framework based on an adversarial deep neural network with a physically-inspired cycle consistency, designed to impose some acquisition properties on the super-resolved images. Our framework can exploit HR images, regardless of the domain where they are coming from, to transfer the quality of the HR images to the initial LR images. This property can be particularly useful in all situations where pairs of LR/HR are not available during the training. Our quantitative analysis, validated using a database of 238 endomicroscopy video sequences from 143 patients, shows the ability of the pipeline to produce convincing super-resolved images. A Mean Opinion Score (MOS) study also confirms this quantitative image quality assessment.Comment: Accepted for publication on Medical Image Analysis journa

    NAM: Non-Adversarial Unsupervised Domain Mapping

    Full text link
    Several methods were recently proposed for the task of translating images between domains without prior knowledge in the form of correspondences. The existing methods apply adversarial learning to ensure that the distribution of the mapped source domain is indistinguishable from the target domain, which suffers from known stability issues. In addition, most methods rely heavily on `cycle' relationships between the domains, which enforce a one-to-one mapping. In this work, we introduce an alternative method: Non-Adversarial Mapping (NAM), which separates the task of target domain generative modeling from the cross-domain mapping task. NAM relies on a pre-trained generative model of the target domain, and aligns each source image with an image synthesized from the target domain, while jointly optimizing the domain mapping function. It has several key advantages: higher quality and resolution image translations, simpler and more stable training and reusable target models. Extensive experiments are presented validating the advantages of our method.Comment: ECCV 201
    • …
    corecore